Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A chemotherapy drug packs a one-two punch

22.02.2007
Cancer can be wily, and those who treat the disease have amassed a wide array of weapons with which to fight it and kill tumors. Radiation therapy and various forms of chemotherapy were all thought to be separate but equal treatments.

Now, however, new research is beginning to show that it’s not just killing the cancer cells that matter. How they’re killed may turn out to be just as important and could play a role in marshalling the body’s immune response.

New research by Rockefeller University associate professor Madhav Dhodapkar, head of the Laboratory of Tumor Immunology and Immunotherapy, shows that one form of chemotherapy — a drug called bortezomib — kills tumor cells in such a way that it may allow the immune system to recognize them.

In a first edition paper published online this week by the journal Blood, Dhodapkar, postdoctoral fellow Radek Spisek, and their colleagues show that unlike radiation or other chemical therapies, bortezomib can kill multiple myeloma cells in culture in such a way that it elicits a response by memory and killer T cells. The results suggest the drug has the potential to enhance patients’ immunity to tumors, helping their bodies fight the disease more effectively.

Multiple myeloma is a cancer of immune cells in the bone marrow. Dhodapkar’s experiments show that when treated with bortezomib in tissue culture, multiple myeloma cells die in such a way that a heat shock protein, called hsp90, migrate to their surface. When another group of immune cells, called dendritic cells, encounter hsp90 on the dying tumor cells, the protein acts as a signal for their activation. The dendritic cells then ingest them for presentation to memory and killer T cells, a progression that — in humans — could potentially lead to enhanced immunity. “If you could directly target the drug to these cells,” Dhodapkar says, “it may be sufficient enough to create a vaccine. The exposure of heat shock proteins on dying cells represents an immunogenic form of cell death.”

When the researchers tested other standard treatments for multiple myeloma, such as radiation or the corticosteroid dexamethasone, the therapies failed to increase levels of hsp90 on the surface of dying cells, and so couldn’t activate dendritic cells to the degree that bortezomib did. And their findings aren’t limited to a single cancer: After treatment with bortezomib, dying lymphoma and breast cancer cells experienced the same increase in hsp90.

How well this research will translate to increased survival rates depends on how applicable these tissue culture studies are to the actual immune system response in people. So Dhodapkar plans to determine whether the enhanced T-cell effect he witnessed in tissue culture holds true in patients treated with this drug. If it does, the next move will be to directly target tumors in patients. “A simple experiment that hasn’t been done yet is simply injecting bortezomib directly into tumors. By directly targeting the tumor, rather than injecting the drug intravenously, we may be able to take better advantage of bortezomib’s distinct properties,” he says.

Kristine Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu

Further reports about: Bortezomib Dhodapkar Hsp90 chemotherapy immune cell

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>