Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A chemotherapy drug packs a one-two punch

22.02.2007
Cancer can be wily, and those who treat the disease have amassed a wide array of weapons with which to fight it and kill tumors. Radiation therapy and various forms of chemotherapy were all thought to be separate but equal treatments.

Now, however, new research is beginning to show that it’s not just killing the cancer cells that matter. How they’re killed may turn out to be just as important and could play a role in marshalling the body’s immune response.

New research by Rockefeller University associate professor Madhav Dhodapkar, head of the Laboratory of Tumor Immunology and Immunotherapy, shows that one form of chemotherapy — a drug called bortezomib — kills tumor cells in such a way that it may allow the immune system to recognize them.

In a first edition paper published online this week by the journal Blood, Dhodapkar, postdoctoral fellow Radek Spisek, and their colleagues show that unlike radiation or other chemical therapies, bortezomib can kill multiple myeloma cells in culture in such a way that it elicits a response by memory and killer T cells. The results suggest the drug has the potential to enhance patients’ immunity to tumors, helping their bodies fight the disease more effectively.

Multiple myeloma is a cancer of immune cells in the bone marrow. Dhodapkar’s experiments show that when treated with bortezomib in tissue culture, multiple myeloma cells die in such a way that a heat shock protein, called hsp90, migrate to their surface. When another group of immune cells, called dendritic cells, encounter hsp90 on the dying tumor cells, the protein acts as a signal for their activation. The dendritic cells then ingest them for presentation to memory and killer T cells, a progression that — in humans — could potentially lead to enhanced immunity. “If you could directly target the drug to these cells,” Dhodapkar says, “it may be sufficient enough to create a vaccine. The exposure of heat shock proteins on dying cells represents an immunogenic form of cell death.”

When the researchers tested other standard treatments for multiple myeloma, such as radiation or the corticosteroid dexamethasone, the therapies failed to increase levels of hsp90 on the surface of dying cells, and so couldn’t activate dendritic cells to the degree that bortezomib did. And their findings aren’t limited to a single cancer: After treatment with bortezomib, dying lymphoma and breast cancer cells experienced the same increase in hsp90.

How well this research will translate to increased survival rates depends on how applicable these tissue culture studies are to the actual immune system response in people. So Dhodapkar plans to determine whether the enhanced T-cell effect he witnessed in tissue culture holds true in patients treated with this drug. If it does, the next move will be to directly target tumors in patients. “A simple experiment that hasn’t been done yet is simply injecting bortezomib directly into tumors. By directly targeting the tumor, rather than injecting the drug intravenously, we may be able to take better advantage of bortezomib’s distinct properties,” he says.

Kristine Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu

Further reports about: Bortezomib Dhodapkar Hsp90 chemotherapy immune cell

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>