Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene hunters close in on Lou Gehrig’s disease

22.02.2007
In the first genome-wide search for the genetic roots of the most common form of amyotrophic lateral sclerosis (ALS), Johns Hopkins scientists have newly identified 34 unique variations in the human genetic code among 276 unrelated subjects with ALS.

The 34 so-called single nucleotide polymorphisms, or SNPs, represent good candidate genes predisposing people to the non-inherited form of the fatal neurodegenerative disease.

“Although we haven’t located the exact gene responsible for sporadic ALS, our results seriously narrow the search and bring us that much closer to finding what we need to start developing treatments for the disease,” says Bryan J. Traynor, M.D., of the Department of Neurology at The Johns Hopkins University School of Medicine.

ALS, also known as Lou Gehrig’s disease for the legendary Yankee first baseman who succumbed to its paralyzing assault on the nervous system, kills 10,000 Americans a year. An estimated one in 2,000 people is at risk of developing the disease.

... more about:
»Disease »SNP »subject

Genes behind inherited forms of ALS -- responsible for about only 5 percent of all cases -- were discovered a decade ago, but no genetic roots have previously been found for sporadic ALS, which occurs in people without a family history of the disease.

In the Johns Hopkins study, described in the online version of Lancet Neurology this month, Traynor and his team scanned the entire genome of 276 adult male and female subjects with sporadic ALS and 271 adult male and female subjects with no history of neurological disease.

Researchers used a new technology known as “SNP chips” to analyze all 555,352 SNPs in the genome of each subject. SNP chips are glass slides that resemble computer processor chips. They’re coated with tiny beads that “read” the SNPs scattered throughout the human genome.

The researchers found 34 genetic variants that ALS patients were more likely to have compared to normal individuals without the disease.

“This is the first major step toward understanding how genetics may influence the most common form of ALS,” says co-researcher Jeffrey D. Rothstein, M.D., Ph.D., professor in the Department of Neurology at Johns Hopkins. “The results will not only help us to better understand sporadic ALS but also to tailor tools that will reveal therapies for it.”

Traynor cautioned that the 34 SNPs are not guaranteed trail markers for ALS genes. “If you roll dice 555,352 times, you are bound to get lucky by chance alone on some of those throws,” he says. “The next step is to go back and figure out which of these ‘hits’ are real and which are false.”

Thousands of other SNPs were more weakly associated with ALS, some of which could turn out to be just as important as those more strongly linked.

Traynor says a follow-up study is in the works that will replicate the research using a similar number of patients and controls. Traynor, who has a joint affiliation with the National Institute of Mental Health in Bethesda, Md., collaborated in this study with lead author Jennifer Schymick and fellow researcher John Hardy, Ph.D., both of the Laboratory of Neurogenetics at the National Institute on Aging in Bethesda. Researchers from the National Institutes of Health, from the Packard Center for ALS Research at Johns Hopkins and from the University of Turin, Italy, also contributed to this study.

Eric Vohr | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: Disease SNP subject

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Building a brain, cell by cell: Researchers make a mini neuron network (of two)

23.05.2018 | Life Sciences

One-way roads for spin currents

23.05.2018 | Physics and Astronomy

A simple mechanism could have been decisive for the development of life

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>