Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene hunters close in on Lou Gehrig’s disease

22.02.2007
In the first genome-wide search for the genetic roots of the most common form of amyotrophic lateral sclerosis (ALS), Johns Hopkins scientists have newly identified 34 unique variations in the human genetic code among 276 unrelated subjects with ALS.

The 34 so-called single nucleotide polymorphisms, or SNPs, represent good candidate genes predisposing people to the non-inherited form of the fatal neurodegenerative disease.

“Although we haven’t located the exact gene responsible for sporadic ALS, our results seriously narrow the search and bring us that much closer to finding what we need to start developing treatments for the disease,” says Bryan J. Traynor, M.D., of the Department of Neurology at The Johns Hopkins University School of Medicine.

ALS, also known as Lou Gehrig’s disease for the legendary Yankee first baseman who succumbed to its paralyzing assault on the nervous system, kills 10,000 Americans a year. An estimated one in 2,000 people is at risk of developing the disease.

... more about:
»Disease »SNP »subject

Genes behind inherited forms of ALS -- responsible for about only 5 percent of all cases -- were discovered a decade ago, but no genetic roots have previously been found for sporadic ALS, which occurs in people without a family history of the disease.

In the Johns Hopkins study, described in the online version of Lancet Neurology this month, Traynor and his team scanned the entire genome of 276 adult male and female subjects with sporadic ALS and 271 adult male and female subjects with no history of neurological disease.

Researchers used a new technology known as “SNP chips” to analyze all 555,352 SNPs in the genome of each subject. SNP chips are glass slides that resemble computer processor chips. They’re coated with tiny beads that “read” the SNPs scattered throughout the human genome.

The researchers found 34 genetic variants that ALS patients were more likely to have compared to normal individuals without the disease.

“This is the first major step toward understanding how genetics may influence the most common form of ALS,” says co-researcher Jeffrey D. Rothstein, M.D., Ph.D., professor in the Department of Neurology at Johns Hopkins. “The results will not only help us to better understand sporadic ALS but also to tailor tools that will reveal therapies for it.”

Traynor cautioned that the 34 SNPs are not guaranteed trail markers for ALS genes. “If you roll dice 555,352 times, you are bound to get lucky by chance alone on some of those throws,” he says. “The next step is to go back and figure out which of these ‘hits’ are real and which are false.”

Thousands of other SNPs were more weakly associated with ALS, some of which could turn out to be just as important as those more strongly linked.

Traynor says a follow-up study is in the works that will replicate the research using a similar number of patients and controls. Traynor, who has a joint affiliation with the National Institute of Mental Health in Bethesda, Md., collaborated in this study with lead author Jennifer Schymick and fellow researcher John Hardy, Ph.D., both of the Laboratory of Neurogenetics at the National Institute on Aging in Bethesda. Researchers from the National Institutes of Health, from the Packard Center for ALS Research at Johns Hopkins and from the University of Turin, Italy, also contributed to this study.

Eric Vohr | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: Disease SNP subject

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>