Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BC biologists identify alternative brain cancer treatment

22.02.2007
High-fat, low-carbohydrate diet significantly slows tumor growth and enhances health in mice

Boston College biologists have identified an alternative, diet-based method of treating brain cancer that does not involve administering toxic chemicals, radiation or invasive surgery.

The biologists found that KetoCal, a commercially available high-fat, low-carbohydrate diet designed to treat epilepsy in children, can significantly decrease the growth of brain tumors in laboratory mice. Moreover, the diet significantly enhanced health and survival rates relative to mice in control groups who consumed a standard low-fat, high-carbohydrate diet.

The findings were based on a study published this week in the online journal Nutrition & Metabolism.

“KetoCal represents a novel alternative therapy for malignant brain cancer,” said Boston College Biology Professor Tom Seyfried, who conceived and supervised the study. “While the tumors did not vanish in the mice who received the strict KetoCal diet, they got significantly smaller and the animals lived significantly longer. And compared to radiation, chemotherapy and surgery, KetoCal is a relatively inexpensive treatment option.”

Malignant brain cancer is one of the most lethal types of cancer in adults and is the second leading cause of cancer death in children. Many current ways of treating the disease fail to provide long-term management because they ineffectively target tumor cells and harm the health and vitality of normal brain cells.

The KetoCal diet gets around this dilemma by essentially starving the brain tumor cells of the sugary molecules on which they rely for growth and survival. Because of its special composition, the diet deprives the tumor cells of the glucose they need; at the same time, the diet provides normal brain cells with ketones, a class of organic compounds they can metabolize effectively but the tumor cells cannot.

In their experiment, the BC team surgically implanted two different kinds of tumors into the brains of male mice. The mice were then divided into three groups. One group was fed a high-carbohydrate mouse chow, one was given unlimited amounts of KetoCal, and the final group was given KetoCal in a restricted dosage.

The researchers found that in the mice on the restricted diet, KetoCal decreased the growth of brain tumors by between 35 percent and 65 percent. Moreover, survival rates were higher in the mice on the restricted diet.

“This preclinical study indicates that KetoCal is a safe and effective diet therapy and should be considered as an alternative therapeutic option for malignant brain cancer,” the researchers wrote.

KetoCal is manufactured by Nutricia North America. The study authors report they have no financial interests in the company, although it did provide the KetoCal used in the experiments as a gift.

The journal article’s lead author is Weihua Zhou, a research technician in the Boston College Biology Department. Co-authors include Seyfried, Purna Mukherjee, Michael Kiebish, William Markis and John Mantis.

Greg Frost | EurekAlert!
Further information:
http://www.bc.edu

Further reports about: Biologists KetoCal brain tumor significantly tumor cells

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>