Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research finds people and pigeons see eye to eye

22.02.2007
Pigeons and humans use similar visual cues to identify objects, a finding that could have promising implications in the development of novel technologies, according to new research conducted by a University of New Hampshire professor.

Brett Gibson, an assistant professor of psychology who studies animal behavior, details his latest research in the journal article, “Non-accidental properties underlie shape recognition in mammalian and non-mammalian vision,” published today in Current Biology. Gibson and his colleagues found that humans and pigeons, which have different visual systems, have evolved to use similar techniques and information to recognize objects.

“Understanding how avian visual systems solve problems that require considerable computational prowess may lead to future technological advances, such as small visual prosthetics for the visually impaired, in the same way that understanding visual processing in honeybees has led to the development of flying robots and unmanned helicopters,” the researchers say.

So a software engineer who wants to design a program to help a robot recognize objects can get a leg up from evolution, which has been developing “programs” for object recognition in animals long before humans ever thought of doing such things, Gibson says. “To the extent that we can learn how different animals recognize objects and whether they are doing the same things or different things based on their environments may really help us in designing our own system of object recognition.”

... more about:
»Eye »Gibson »battery »pigeons

Gibson and his colleagues from the University of Iowa (Olga Lazareva and Edward Wasserman), the University of Montreal (Frédéric Gosselin), and the University of Glasgow (Philippe Schyns) found that pigeons, like humans, primarily rely on corners (coterminations) of an object in order to recognize it instead of relying on other features such as shading and color.

For example, a person could easily identify a AA battery from the side profile. But, let’s say the person could see the same battery only from the bottom with the negative terminal. From this perspective, the only visible outline would be a circle; from the bottom, the corners of the battery now are not visible and information about the corners cannot be seen.

“The task of recognizing the object becomes much more difficult. For most people, it would take them a bit longer to recognize the image as a battery,” Gibson says.

The researchers employed a new procedure, which Gosselin and Schyns developed, called Bubbles, to determine what features humans and pigeons were using to recognize objects. Three pigeons were trained to recognize four objects: an arch, a barrel, a brick, and a wedge. The researchers then partially revealed different parts of the object pictures. They then conducted the same experiment with six people.

Not only did both the pigeons and people recognize the four objects based mostly on corners, but they used these properties more than the shading information contained in the images. More notably, the pigeons and people used corner information more than a computer programmed to extract the most useful information for recognizing the object pictures, which suggests that the pigeons and people were using comparable information.

“When members of different species respond similarly to the same visual information, we gain confidence in the prominence of this information, irrespective of cultural or genetic influences. Birds represent an important group to compare with mammals, the other major class of warm-blooded, highly mobile, visually oriented animals,” the researchers say.

“Because of the unique demands of flight, for the last 200 million years birds have been under strong evolutionary pressures to keep their overall size to a minimum. Although a very large portion of the avian central nervous system is devoted to visual processing, the bird brain is still just a fraction of the size of our own. It is this extraordinary mixture of visual competence and small size that makes the study of birds critical to our understanding of the general mechanisms of visual cognition,” they say.

In addition to his research on vision, Gibson has done extensive research involving navigation and memory in birds. He is currently investigating how the Clark’s nutcracker uses different types of spatial information to return to hidden stores of food during winter. More information: www.unh.edu/news/cj_nr/2006/october/lw10bird.cfm?type=n.

Lori Wright | EurekAlert!
Further information:
http://www.unh.edu/news/cj_nr/2006/october/lw10bird.cfm?type=n

Further reports about: Eye Gibson battery pigeons

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>