Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research finds people and pigeons see eye to eye

22.02.2007
Pigeons and humans use similar visual cues to identify objects, a finding that could have promising implications in the development of novel technologies, according to new research conducted by a University of New Hampshire professor.

Brett Gibson, an assistant professor of psychology who studies animal behavior, details his latest research in the journal article, “Non-accidental properties underlie shape recognition in mammalian and non-mammalian vision,” published today in Current Biology. Gibson and his colleagues found that humans and pigeons, which have different visual systems, have evolved to use similar techniques and information to recognize objects.

“Understanding how avian visual systems solve problems that require considerable computational prowess may lead to future technological advances, such as small visual prosthetics for the visually impaired, in the same way that understanding visual processing in honeybees has led to the development of flying robots and unmanned helicopters,” the researchers say.

So a software engineer who wants to design a program to help a robot recognize objects can get a leg up from evolution, which has been developing “programs” for object recognition in animals long before humans ever thought of doing such things, Gibson says. “To the extent that we can learn how different animals recognize objects and whether they are doing the same things or different things based on their environments may really help us in designing our own system of object recognition.”

... more about:
»Eye »Gibson »battery »pigeons

Gibson and his colleagues from the University of Iowa (Olga Lazareva and Edward Wasserman), the University of Montreal (Frédéric Gosselin), and the University of Glasgow (Philippe Schyns) found that pigeons, like humans, primarily rely on corners (coterminations) of an object in order to recognize it instead of relying on other features such as shading and color.

For example, a person could easily identify a AA battery from the side profile. But, let’s say the person could see the same battery only from the bottom with the negative terminal. From this perspective, the only visible outline would be a circle; from the bottom, the corners of the battery now are not visible and information about the corners cannot be seen.

“The task of recognizing the object becomes much more difficult. For most people, it would take them a bit longer to recognize the image as a battery,” Gibson says.

The researchers employed a new procedure, which Gosselin and Schyns developed, called Bubbles, to determine what features humans and pigeons were using to recognize objects. Three pigeons were trained to recognize four objects: an arch, a barrel, a brick, and a wedge. The researchers then partially revealed different parts of the object pictures. They then conducted the same experiment with six people.

Not only did both the pigeons and people recognize the four objects based mostly on corners, but they used these properties more than the shading information contained in the images. More notably, the pigeons and people used corner information more than a computer programmed to extract the most useful information for recognizing the object pictures, which suggests that the pigeons and people were using comparable information.

“When members of different species respond similarly to the same visual information, we gain confidence in the prominence of this information, irrespective of cultural or genetic influences. Birds represent an important group to compare with mammals, the other major class of warm-blooded, highly mobile, visually oriented animals,” the researchers say.

“Because of the unique demands of flight, for the last 200 million years birds have been under strong evolutionary pressures to keep their overall size to a minimum. Although a very large portion of the avian central nervous system is devoted to visual processing, the bird brain is still just a fraction of the size of our own. It is this extraordinary mixture of visual competence and small size that makes the study of birds critical to our understanding of the general mechanisms of visual cognition,” they say.

In addition to his research on vision, Gibson has done extensive research involving navigation and memory in birds. He is currently investigating how the Clark’s nutcracker uses different types of spatial information to return to hidden stores of food during winter. More information: www.unh.edu/news/cj_nr/2006/october/lw10bird.cfm?type=n.

Lori Wright | EurekAlert!
Further information:
http://www.unh.edu/news/cj_nr/2006/october/lw10bird.cfm?type=n

Further reports about: Eye Gibson battery pigeons

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>