Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do you hear what i see?

22.02.2007
New research pinpoints specific areas in sound processing centers in the brains of macaque monkeys that shows enhanced activity when the animals watch a video.

This study confirms a number of recent findings but contradicts classical thinking, in which hearing, taste, touch, sight, and smell are each processed in distinct areas of the brain and only later integrated. The new research, led by Christoph Kayser, PhD, at the Max Planck Institute for Biological Cybernetics in Tübingen, Germany, was published in the February 21 issue of The Journal of Neuroscience.

"This study confirms that what we used to call the 'auditory cortex' should really be thought of as much more complex in terms of its response properties," says Robert Zatorre, PhD, head of the auditory cognitive neuroscience laboratory at McGill University. "The textbook-standard view of sensory systems as isolated from one another is no longer tenable." Zatorre did not participate in the study.

Kayser's team used functional magnetic resonance imaging to draw a diagram of 11 small, tightly packed fields in the monkeys' auditory cortex. Each field has a separate map that covers the full range of frequencies. Scans recorded activity in the monkeys' brains while they watched a video, with and without sound, and listened separately to the accompanying sound. The researchers found that fields in the hindmost part of the auditory cortex showed activity when the monkeys watched the video without sound, and activity was enhanced when the video was presented simultaneously with the sound.

... more about:
»Video »activity »auditory »processing »sensory

"This finding suggests that sensory integration, which is so fundamental to complex mental activity, takes place at very early processing stages," says Daniel Tranel, PhD, of the University of Iowa, who is not affiliated with the study. "This knowledge could help scientists pinpoint sources of extraordinary sensory processing, such as creativity and genius, as well as abnormal sensory processing, as seen in schizophrenia."

Kayser notes that the findings also could be used to reveal the role of audio-visual integration in communication or to help pin down where sounds are coming from. "Clearly, our acoustical understanding often improves if we can see the lips of the speaker -- for example at a crowded cocktail party," he says. "However, currently it is not clear whether and how audio-visual interactions are specialized for the processing of communication signals. "The present study clearly shows where in the auditory system researchers have to focus."

The work was supported by the Max Planck Society, German Research Foundation, and Alexander von Humboldt Foundation.

The Journal of Neuroscience is published by the Society for Neuroscience, an organization of more than 36,500 basic scientists and clinicians who study the brain and nervous system. Kayser can be reached at christoph.kayser@tuebingen.mpg.de.

Sara Harris | EurekAlert!
Further information:
http://www.sfn.org

Further reports about: Video activity auditory processing sensory

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>