Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Local interventions have little effect on metapopulation stability

21.02.2007
Stabilizing fluctuations in the number of individuals in fragmented populations of threatened species is an important concern in conservation biology.

Theoretical studies indicate that localized perturbations, such as adding a constant number of individuals every generation, can stabilize such fluctuations in networks of local populations that are connected to each other by migration (metapopulations). If they work, such perturbations could prove to be a useful tool for managing fragmented and unstable populations.

Sutirth Dey and Amitabh Joshi of Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India used laboratory metapopulations of fruitflies in the first experimental test of whether a constant localized perturbation can stabilize a real biological metapopulation.

Dey and Joshi showed that constant addition of fruitflies every generation to a particular population in the network does stabilize that population locally, but does not have any detectable effect on the dynamics and stability of the fruitfly metapopulation as a whole. Computer simulations of the experimental system using a simple and widely applicable model of population dynamics were able to recover most of the experimental results, indicating that their results are likely to be generalizable to other species. The simulations also indicated that the basic finding of no detectable effect of constant local perturbation on metapopulation dynamics and stability was robust across a much wider range of ecological scenarios than the precise conditions of their fruitfly experiment.

The study of Dey and Joshi sounds a cautionary note for ecologists and conservation biologists trying to stabilize fragmented populations in nature because it indicates that, contrary to theoretical predictions, localized perturbations are unlikely to affect the dynamics of real metapopulations.

This study will be published on February 21, 2007 in PLoS ONE, the international, peer-reviewed, open-access, online publication from the Public Library of Science (PLoS).

Citation: Dey S, Joshi A (2007) Local Perturbations Do Not Affect Stability of Laboratory Fruitfly Metapopulations. PLoS ONE 2(2): e233. doi:10.1371/journal.pone.0000233

Andrew Hyde | alfa
Further information:
http://www.plosone.org

Further reports about: Dynamics Joshi Stability metapopulation perturbation

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>