Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environment and Exercise May Affect Research Results

21.02.2007
A recently completed study at The University of Arizona may have implications for the thousands of scientists worldwide who use “knockout” mice in their research.

In the study, Knockout Mice: Is it Just Genetics? Effects of Enriched Housing on Fibulin-4+/- Mice, lead researcher Ann Baldwin, PhD, suggests that environmental factors may play a large part in research findings that investigators assume are due simply to genetic differences. Further, the study research indicates that appropriate environments may counteract the effects of some genetic deficiencies.

The “knockout” technique is used widely by researchers to aid in understanding physiological functions at the cellular and molecular level. Essentially, it eliminates one or both copies of a gene that produces a specific protein or enzyme.

Dr. Baldwin, a professor of physiology and psychology at the UA College of Medicine, developed a study focusing on mice with only one copy of a gene that encodes for an extracellular matrix protein, fibulin-4. The extracellular matrix, often referred to as connective tissue, supports tissue cells. Fibulin-4 is localized in the aortic media and is essential for maintaining arterial integrity. Dr. Baldwin wanted to determine whether these mice, known as heterozygous fibulin-4 knockout mice, showed arterial defects on a microscopic scale, although outwardly they appeared to be normal.

... more about:
»Aorta »Genetic »effect »knockout

Using high-powered electron microscopy, she found small areas of disorganized tissue, referred to as “gaps,” in the aortas of the heterozygous fibulin-4 knockout mice. The number of gaps found in the knockout mice was approximately 100 times greater than those found in the control, or wild-type, mice.

After preliminary experiments were performed, a second purpose for the study developed, and the researchers set about investigating a hypothesis that the pathologies they observed would be ameliorated by enriched housing conditions.

In the initial experiments, the test mice were housed four-per-cage in standard cages, measuring 26 cm long x 16 cm wide x 12 cm high and containing only bedding. To investigate the effect of enriched housing conditions, the research team repeated the experiments with test animals housed two-per-cage in cages measuring 33 cm long x 25 cm wide x 25 cm high. The larger cages were equipped with a shelf, ladder, exercise wheel and plastic tube.

Observed at night on specific occasions during the testing period, the animals housed in the larger cages spent approximately 40 percent of the observation time exercising in the wheel, while mice housed in the standard cages remained relatively stationary.

Significantly, the mice housed in the standard cages were heavier than those in the larger cages – about twice the weight at the same age – and they showed large quantities of adipose, or fat, tissue around the aorta.

The mice in the larger cages showed virtually no fat around the aorta. They also showed far fewer regions of disorganized tissue in the aorta than those housed in standard cages.

The evidence suggests that even though the knockout mice were genetically predisposed to arterial damage, simply housing them in an enriched environment, where they could perform their normal functions, reduced the number of gaps occurring in the aorta.

Dr. Baldwin explains that one important implication is that housing conditions can affect the differences between wild-type and knockout strains. Thus, research findings that are assumed to be due simply to genetic differences might be interpreted incorrectly; environmental factors may play an important role.

Secondly, as this study indicates, appropriate environments may counteract the effects of some genetic deficiencies. For example, mice given the opportunity to exercise fared better than their counterparts in standard cages.

Knockout Mice: Is it Just Genetics? Effects of Enriched Housing on Fibulin-4+/- Mice, is supported by the National Center for Research Resources and the National Center for Complementary and Alternative Medicine. The full text appears in the Wednesday, Feb. 21, edition of PLoS ONE, the international, peer-reviewed, open-access, online publication from the Public Library of Science (PLoS).

Dr. Baldwin’s research team includes Lihua Marmorstein, PhD, assistant professor of the Department of Ophthalmology and Vision Science at The University of Arizona College of Medicine; Elizabeth Cudilo, UA medical student; and Hamda Al Naemi, PhD, head of the Department of Physiology, University of Qatar.

Citation: Cudilo E, Al Naemi H, Marmorstein L, Baldwin AL (2007) Knockout Mice: Is It Just Genetics? Effect of Enriched Housing on Fibulin-4+/2 Mice. PLoS ONE 2(2): e229. doi:10.1371/journal.pone.0000229

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://dx.doi.org/10.1371/journal.pone.0000229

Further reports about: Aorta Genetic effect knockout

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>