Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environment and Exercise May Affect Research Results

21.02.2007
A recently completed study at The University of Arizona may have implications for the thousands of scientists worldwide who use “knockout” mice in their research.

In the study, Knockout Mice: Is it Just Genetics? Effects of Enriched Housing on Fibulin-4+/- Mice, lead researcher Ann Baldwin, PhD, suggests that environmental factors may play a large part in research findings that investigators assume are due simply to genetic differences. Further, the study research indicates that appropriate environments may counteract the effects of some genetic deficiencies.

The “knockout” technique is used widely by researchers to aid in understanding physiological functions at the cellular and molecular level. Essentially, it eliminates one or both copies of a gene that produces a specific protein or enzyme.

Dr. Baldwin, a professor of physiology and psychology at the UA College of Medicine, developed a study focusing on mice with only one copy of a gene that encodes for an extracellular matrix protein, fibulin-4. The extracellular matrix, often referred to as connective tissue, supports tissue cells. Fibulin-4 is localized in the aortic media and is essential for maintaining arterial integrity. Dr. Baldwin wanted to determine whether these mice, known as heterozygous fibulin-4 knockout mice, showed arterial defects on a microscopic scale, although outwardly they appeared to be normal.

... more about:
»Aorta »Genetic »effect »knockout

Using high-powered electron microscopy, she found small areas of disorganized tissue, referred to as “gaps,” in the aortas of the heterozygous fibulin-4 knockout mice. The number of gaps found in the knockout mice was approximately 100 times greater than those found in the control, or wild-type, mice.

After preliminary experiments were performed, a second purpose for the study developed, and the researchers set about investigating a hypothesis that the pathologies they observed would be ameliorated by enriched housing conditions.

In the initial experiments, the test mice were housed four-per-cage in standard cages, measuring 26 cm long x 16 cm wide x 12 cm high and containing only bedding. To investigate the effect of enriched housing conditions, the research team repeated the experiments with test animals housed two-per-cage in cages measuring 33 cm long x 25 cm wide x 25 cm high. The larger cages were equipped with a shelf, ladder, exercise wheel and plastic tube.

Observed at night on specific occasions during the testing period, the animals housed in the larger cages spent approximately 40 percent of the observation time exercising in the wheel, while mice housed in the standard cages remained relatively stationary.

Significantly, the mice housed in the standard cages were heavier than those in the larger cages – about twice the weight at the same age – and they showed large quantities of adipose, or fat, tissue around the aorta.

The mice in the larger cages showed virtually no fat around the aorta. They also showed far fewer regions of disorganized tissue in the aorta than those housed in standard cages.

The evidence suggests that even though the knockout mice were genetically predisposed to arterial damage, simply housing them in an enriched environment, where they could perform their normal functions, reduced the number of gaps occurring in the aorta.

Dr. Baldwin explains that one important implication is that housing conditions can affect the differences between wild-type and knockout strains. Thus, research findings that are assumed to be due simply to genetic differences might be interpreted incorrectly; environmental factors may play an important role.

Secondly, as this study indicates, appropriate environments may counteract the effects of some genetic deficiencies. For example, mice given the opportunity to exercise fared better than their counterparts in standard cages.

Knockout Mice: Is it Just Genetics? Effects of Enriched Housing on Fibulin-4+/- Mice, is supported by the National Center for Research Resources and the National Center for Complementary and Alternative Medicine. The full text appears in the Wednesday, Feb. 21, edition of PLoS ONE, the international, peer-reviewed, open-access, online publication from the Public Library of Science (PLoS).

Dr. Baldwin’s research team includes Lihua Marmorstein, PhD, assistant professor of the Department of Ophthalmology and Vision Science at The University of Arizona College of Medicine; Elizabeth Cudilo, UA medical student; and Hamda Al Naemi, PhD, head of the Department of Physiology, University of Qatar.

Citation: Cudilo E, Al Naemi H, Marmorstein L, Baldwin AL (2007) Knockout Mice: Is It Just Genetics? Effect of Enriched Housing on Fibulin-4+/2 Mice. PLoS ONE 2(2): e229. doi:10.1371/journal.pone.0000229

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://dx.doi.org/10.1371/journal.pone.0000229

Further reports about: Aorta Genetic effect knockout

More articles from Life Sciences:

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

nachricht UK chemistry researchers develop catalyst that mimics the z-scheme of photosynthesis
26.06.2017 | University of Kentucky

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>