Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Environment and Exercise May Affect Research Results

A recently completed study at The University of Arizona may have implications for the thousands of scientists worldwide who use “knockout” mice in their research.

In the study, Knockout Mice: Is it Just Genetics? Effects of Enriched Housing on Fibulin-4+/- Mice, lead researcher Ann Baldwin, PhD, suggests that environmental factors may play a large part in research findings that investigators assume are due simply to genetic differences. Further, the study research indicates that appropriate environments may counteract the effects of some genetic deficiencies.

The “knockout” technique is used widely by researchers to aid in understanding physiological functions at the cellular and molecular level. Essentially, it eliminates one or both copies of a gene that produces a specific protein or enzyme.

Dr. Baldwin, a professor of physiology and psychology at the UA College of Medicine, developed a study focusing on mice with only one copy of a gene that encodes for an extracellular matrix protein, fibulin-4. The extracellular matrix, often referred to as connective tissue, supports tissue cells. Fibulin-4 is localized in the aortic media and is essential for maintaining arterial integrity. Dr. Baldwin wanted to determine whether these mice, known as heterozygous fibulin-4 knockout mice, showed arterial defects on a microscopic scale, although outwardly they appeared to be normal.

... more about:
»Aorta »Genetic »effect »knockout

Using high-powered electron microscopy, she found small areas of disorganized tissue, referred to as “gaps,” in the aortas of the heterozygous fibulin-4 knockout mice. The number of gaps found in the knockout mice was approximately 100 times greater than those found in the control, or wild-type, mice.

After preliminary experiments were performed, a second purpose for the study developed, and the researchers set about investigating a hypothesis that the pathologies they observed would be ameliorated by enriched housing conditions.

In the initial experiments, the test mice were housed four-per-cage in standard cages, measuring 26 cm long x 16 cm wide x 12 cm high and containing only bedding. To investigate the effect of enriched housing conditions, the research team repeated the experiments with test animals housed two-per-cage in cages measuring 33 cm long x 25 cm wide x 25 cm high. The larger cages were equipped with a shelf, ladder, exercise wheel and plastic tube.

Observed at night on specific occasions during the testing period, the animals housed in the larger cages spent approximately 40 percent of the observation time exercising in the wheel, while mice housed in the standard cages remained relatively stationary.

Significantly, the mice housed in the standard cages were heavier than those in the larger cages – about twice the weight at the same age – and they showed large quantities of adipose, or fat, tissue around the aorta.

The mice in the larger cages showed virtually no fat around the aorta. They also showed far fewer regions of disorganized tissue in the aorta than those housed in standard cages.

The evidence suggests that even though the knockout mice were genetically predisposed to arterial damage, simply housing them in an enriched environment, where they could perform their normal functions, reduced the number of gaps occurring in the aorta.

Dr. Baldwin explains that one important implication is that housing conditions can affect the differences between wild-type and knockout strains. Thus, research findings that are assumed to be due simply to genetic differences might be interpreted incorrectly; environmental factors may play an important role.

Secondly, as this study indicates, appropriate environments may counteract the effects of some genetic deficiencies. For example, mice given the opportunity to exercise fared better than their counterparts in standard cages.

Knockout Mice: Is it Just Genetics? Effects of Enriched Housing on Fibulin-4+/- Mice, is supported by the National Center for Research Resources and the National Center for Complementary and Alternative Medicine. The full text appears in the Wednesday, Feb. 21, edition of PLoS ONE, the international, peer-reviewed, open-access, online publication from the Public Library of Science (PLoS).

Dr. Baldwin’s research team includes Lihua Marmorstein, PhD, assistant professor of the Department of Ophthalmology and Vision Science at The University of Arizona College of Medicine; Elizabeth Cudilo, UA medical student; and Hamda Al Naemi, PhD, head of the Department of Physiology, University of Qatar.

Citation: Cudilo E, Al Naemi H, Marmorstein L, Baldwin AL (2007) Knockout Mice: Is It Just Genetics? Effect of Enriched Housing on Fibulin-4+/2 Mice. PLoS ONE 2(2): e229. doi:10.1371/journal.pone.0000229

Andrew Hyde | alfa
Further information:

Further reports about: Aorta Genetic effect knockout

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>