Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer that colonizes our bodies

20.02.2007
To Robert C. von Borstel, cancer is a metaphorical example of the perfect invasion by a founder species. Like the first pregnant finch that landed on a deserted island in the Galapagos Archipelago, the first cancer cell in the human body has to undergo many mutations through many generations to establish itself as an invader of different organs in the body. But once it is there, like any newly stabilized species in different ecological niches, cancer is tough to get rid of.

The former University of Alberta biologist has been working with DNA – the molecule that carries our cells’ genetic information – ever since 1947, six years before its structure was described by Watson and Crick. His fundamental Natural Sciences and Engineering Research Council (NSERC) work on how radiation can kill cells, how the DNA molecule itself can control mutation, and other research has earned him a fellowship in the American Association for the Advancement for Science (AAAS).

Now, von Borstel, at the AAAS conference in San Francisco, to be held between Feb. 15 and 19, will deliver a talk about how cancer cell mutation and selection are metaphorically similar to how a new species begins its evolution.

"Of course, the difference with cancer is that it destroys itself when it kills you off, whereas many new species stabilize," von Borstel says. "Obviously, no metaphor is the be-all of reality. But I’m hoping this symposium I am hosting will help people look at cancer in a new light."

... more about:
»Borstel »Mutation »Radiation

After growing up on a wheat and cattle ranch in Oregon, von Borstel was drafted into the U.S. Navy as a seaman first-class in 1944. Following the Second World War, he pursued his university education in the United States and joined Tennessee’s Oak Ridge National Laboratory in 1953, where he studied the effects of radiation on insects, and described the mechanisms by which control of insect pests by X-irradiation is achieved.

From there, he accepted a position as chair of the University of Alberta’s Genetics Department. While there, he received NSERC grants over a 25-year period after the Council was formed. Von Borstel’s principal research efforts were on the causes of spontaneous mutations and how genes repair themselves.

He remained at the university past his mandatory retirement in 1992, continuing research for another 10 years. It was during his "retirement" years that he discovered how DNA and their components, the nucleosides, can repair chromosomes damaged by radiation. This suggests there are many natural ways for animals and humans to heal themselves. Also, he and his colleague Oksana Iavorovska discovered that human ovarian endometriosis is induced in sun-lovers by the ultraviolet radiation in sunlight.

"It’s been a privilege for me to do my work for so long and, as a matter of fact, I wish I was able to continue doing it today," the 82-year-old professor emeritus says. "Just before my laboratory was closed, my team of researchers was studying the number of genes responsible for spontaneous mutation rates in yeast, and in our first random sample we discovered that one-third of them control the mutation rate, and we had expected that only about 4 per cent might affect the rate. This shows that no matter how long you carry out research, there’s always something surprising around the corner."

Doré Dunne | EurekAlert!
Further information:
http://www.ualberta.ca

Further reports about: Borstel Mutation Radiation

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>