Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer that colonizes our bodies

20.02.2007
To Robert C. von Borstel, cancer is a metaphorical example of the perfect invasion by a founder species. Like the first pregnant finch that landed on a deserted island in the Galapagos Archipelago, the first cancer cell in the human body has to undergo many mutations through many generations to establish itself as an invader of different organs in the body. But once it is there, like any newly stabilized species in different ecological niches, cancer is tough to get rid of.

The former University of Alberta biologist has been working with DNA – the molecule that carries our cells’ genetic information – ever since 1947, six years before its structure was described by Watson and Crick. His fundamental Natural Sciences and Engineering Research Council (NSERC) work on how radiation can kill cells, how the DNA molecule itself can control mutation, and other research has earned him a fellowship in the American Association for the Advancement for Science (AAAS).

Now, von Borstel, at the AAAS conference in San Francisco, to be held between Feb. 15 and 19, will deliver a talk about how cancer cell mutation and selection are metaphorically similar to how a new species begins its evolution.

"Of course, the difference with cancer is that it destroys itself when it kills you off, whereas many new species stabilize," von Borstel says. "Obviously, no metaphor is the be-all of reality. But I’m hoping this symposium I am hosting will help people look at cancer in a new light."

... more about:
»Borstel »Mutation »Radiation

After growing up on a wheat and cattle ranch in Oregon, von Borstel was drafted into the U.S. Navy as a seaman first-class in 1944. Following the Second World War, he pursued his university education in the United States and joined Tennessee’s Oak Ridge National Laboratory in 1953, where he studied the effects of radiation on insects, and described the mechanisms by which control of insect pests by X-irradiation is achieved.

From there, he accepted a position as chair of the University of Alberta’s Genetics Department. While there, he received NSERC grants over a 25-year period after the Council was formed. Von Borstel’s principal research efforts were on the causes of spontaneous mutations and how genes repair themselves.

He remained at the university past his mandatory retirement in 1992, continuing research for another 10 years. It was during his "retirement" years that he discovered how DNA and their components, the nucleosides, can repair chromosomes damaged by radiation. This suggests there are many natural ways for animals and humans to heal themselves. Also, he and his colleague Oksana Iavorovska discovered that human ovarian endometriosis is induced in sun-lovers by the ultraviolet radiation in sunlight.

"It’s been a privilege for me to do my work for so long and, as a matter of fact, I wish I was able to continue doing it today," the 82-year-old professor emeritus says. "Just before my laboratory was closed, my team of researchers was studying the number of genes responsible for spontaneous mutation rates in yeast, and in our first random sample we discovered that one-third of them control the mutation rate, and we had expected that only about 4 per cent might affect the rate. This shows that no matter how long you carry out research, there’s always something surprising around the corner."

Doré Dunne | EurekAlert!
Further information:
http://www.ualberta.ca

Further reports about: Borstel Mutation Radiation

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>