Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green chemistry can help nanotechnology mature

20.02.2007
Planning now can reduce risks of environmental and health-related side effects

The safest possible future for advancing nanotechnology in a sustainable world can be reached by using green chemistry, says James E. Hutchison, a professor of chemistry at the University of Oregon.

“Around the world, there is a growing urgency about nanotechnology and its possible health and environmental impacts,” Hutchison said in his talk Sunday during a workshop at the annual meeting of the American Association for the Advancement of Science. “There is a concern that these issues will hinder commercialization of this industry.”

Scientists need to take a proactive approach to advancing from the current discovery phase in the creation of nanomaterials into a production phase that is efficient and reduces waste, he said. In his talk, Hutchison suggested a green framework for moving the industry forward.

... more about:
»CHEMISTRY »Nanotechnology »solvent

Nanotechnology refers to research on materials that are nanometer in size – or about 1 billionth of a meter and applicable to virtually every technology and medicine. The field of nanoscience, Hutchison said, is still in the discovery phase, in which new materials are being synthesized for testing for very specific physical properties. During such work, there often are unintended properties of material that potentially can be hazardous to the environment or human health but are, for now, an acceptable risk in secured research environments, he said.

Now is the time, Hutchison said, for scientists to “seriously consider the design of materials, processes and applications that minimize hazard and waste, and this will be essential as nanoscience discoveries transition to the products of nanotechnology.”

Hutchison is a leading U.S. innovator in nanofabrication and assembly processes and is a pioneer in the use of green chemistry, which he also teaches to other scientists around the country at workshops. He also is the leader of the Safer Nanomaterials and Nanomanufacturing Initiative, which is funded by an Air Force Research Laboratory grant to the Oregon Nanoscience and Microtechnologies Institute.

Green chemistry, he argues, can sharply reduce the use of toxic solvents and produce safer products with reduced chances for unintended consequences. It also can provide opportunity for new innovations.

“Green chemistry allows us to think about new space and new parameters,” Hutchison said. “We have the opportunity to develop the technology correctly from the beginning, rather than trying to rework and entrenched technology.”

Hutchison, who is director of the UO’s Material Sciences Institute, is developing diverse libraries of nanoparticles, “in which we systematically bury the structural parameters and use in vivo and in vitro assays to determine the relationship between biological response and structural parameters.”

One such library covers gold nanoparticles for use in basic research. By studying these nanoparticles, he said, researchers can get an idea of what kinds of new electronic, optical and pharmaceutical products eventually may come to market. Hutchison received a patent in 2005 for his synthesis of gold nanoparticles using green chemistry.

Hutchison told the AAAS gathering that he recently published a technique for purifying nanoparticles that uses membranes with nanopores so small that only impurities pass through – a green approach that allows the purification of particles rapidly without using organic solvents. “Before this accomplishment, purifying the material used up 15 or so liters of solvent per gram of particles,” he said. “If solvent is the density of water, that’s 15,000 times more mass used to purify it than we get out of it.”

The nanotechnology industry, Hutchison said, has reached an important moment in time. “There is an opportunity to stay ahead of the curve,” he said. “We should commit ourselves to design these materials and processes to be green from the beginning, and this will provide a lot of freedom from layers of regulation to researchers and companies, allowing for more innovation.”

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

Further reports about: CHEMISTRY Nanotechnology solvent

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>