Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green chemistry can help nanotechnology mature

20.02.2007
Planning now can reduce risks of environmental and health-related side effects

The safest possible future for advancing nanotechnology in a sustainable world can be reached by using green chemistry, says James E. Hutchison, a professor of chemistry at the University of Oregon.

“Around the world, there is a growing urgency about nanotechnology and its possible health and environmental impacts,” Hutchison said in his talk Sunday during a workshop at the annual meeting of the American Association for the Advancement of Science. “There is a concern that these issues will hinder commercialization of this industry.”

Scientists need to take a proactive approach to advancing from the current discovery phase in the creation of nanomaterials into a production phase that is efficient and reduces waste, he said. In his talk, Hutchison suggested a green framework for moving the industry forward.

... more about:
»CHEMISTRY »Nanotechnology »solvent

Nanotechnology refers to research on materials that are nanometer in size – or about 1 billionth of a meter and applicable to virtually every technology and medicine. The field of nanoscience, Hutchison said, is still in the discovery phase, in which new materials are being synthesized for testing for very specific physical properties. During such work, there often are unintended properties of material that potentially can be hazardous to the environment or human health but are, for now, an acceptable risk in secured research environments, he said.

Now is the time, Hutchison said, for scientists to “seriously consider the design of materials, processes and applications that minimize hazard and waste, and this will be essential as nanoscience discoveries transition to the products of nanotechnology.”

Hutchison is a leading U.S. innovator in nanofabrication and assembly processes and is a pioneer in the use of green chemistry, which he also teaches to other scientists around the country at workshops. He also is the leader of the Safer Nanomaterials and Nanomanufacturing Initiative, which is funded by an Air Force Research Laboratory grant to the Oregon Nanoscience and Microtechnologies Institute.

Green chemistry, he argues, can sharply reduce the use of toxic solvents and produce safer products with reduced chances for unintended consequences. It also can provide opportunity for new innovations.

“Green chemistry allows us to think about new space and new parameters,” Hutchison said. “We have the opportunity to develop the technology correctly from the beginning, rather than trying to rework and entrenched technology.”

Hutchison, who is director of the UO’s Material Sciences Institute, is developing diverse libraries of nanoparticles, “in which we systematically bury the structural parameters and use in vivo and in vitro assays to determine the relationship between biological response and structural parameters.”

One such library covers gold nanoparticles for use in basic research. By studying these nanoparticles, he said, researchers can get an idea of what kinds of new electronic, optical and pharmaceutical products eventually may come to market. Hutchison received a patent in 2005 for his synthesis of gold nanoparticles using green chemistry.

Hutchison told the AAAS gathering that he recently published a technique for purifying nanoparticles that uses membranes with nanopores so small that only impurities pass through – a green approach that allows the purification of particles rapidly without using organic solvents. “Before this accomplishment, purifying the material used up 15 or so liters of solvent per gram of particles,” he said. “If solvent is the density of water, that’s 15,000 times more mass used to purify it than we get out of it.”

The nanotechnology industry, Hutchison said, has reached an important moment in time. “There is an opportunity to stay ahead of the curve,” he said. “We should commit ourselves to design these materials and processes to be green from the beginning, and this will provide a lot of freedom from layers of regulation to researchers and companies, allowing for more innovation.”

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

Further reports about: CHEMISTRY Nanotechnology solvent

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>