Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Harvard scientists partner to develop and distribute new tuberculosis vaccine

Low-cost scaleable solution could improve TB care, slow spread of HIV/AIDS in developing world

Bioengineers and public health researchers at Harvard University have developed a novel spraying method for delivering the most common tuberculosis (TB) vaccine, providing a new low-cost and scaleable technique that offers needle-free delivery and greater stability at room temperature than existing methods. The process could one day provide a better approach for vaccination against TB and help prevent the related spread of HIV/AIDS in the developing world.

Researcher David Edwards will describe the finding -- and ongoing work to encourage widespread use of the new vaccine in the developing world -- this week at the annual meeting of the American Association for the Advancement of Science in San Francisco.

Edwards, an international leader in aerosol drug and vaccine delivery, sees great promise for the advance, which he and his colleagues hope to develop in the next few years through a partnership with the international not-for-profit Medicine in Need (MEND), based in Cambridge, Mass., Paris, and Cape Town.

... more about:
»BCG »Edwards »Tuberculosis »drying

His research, as well as the efforts to distribute the new vaccine in conjunction with MEND, are supported by a Grand Challenge Grant from the Bill and Melinda Gates Foundation.

"With the increasing incidence of tuberculosis and drug-resistant disease in developing countries due to HIV/AIDS, there is a need for vaccines that are more effective than the present Bacillus Calmette-Guérin (BCG) vaccine," says Edwards, the Gordon McKay Professor of the Practice of Biomedical Engineering in Harvard's School of Engineering and Applied Sciences. "An optimal new vaccine would provide a safe and more consistent degree of protection by eliminating needle injection and refrigerated storage."

BCG, the most widely administered childhood vaccine in the world with 100 million infant administrations annually, is presently dried by freezing and delivered by needle injection. The commercial formulation requires refrigerated storage and has shown variable degrees of protection against tuberculosis in different parts of the world. Because of such limitations, public health experts and physicians have long seen a need for alternatives to the traditional BCG vaccine and current treatment strategies.

The spray drying process Edwards developed for the BCG vaccine is similar to the way manufacturers prepare powdered milk. In fact, Edwards's first exposure to the spray drying process occurred when he was working with a spray dryer to produce highly respirable drug aerosols in a food science lab.

While spray drying of small and large molecules is common in the food, cosmetic, and pharmaceutical industries, the method has not been commonly used for drying cellular material. Most important, the new technique enables the BCG vaccine, and potentially other bacterial and viral-based vaccines, to be dried without the traditional problems associated with standard freezing.

"Unlike traditional freezing techniques, spray drying is lower-cost, easily scaleable for manufacturing, and ideal for use in needle-free formulations, such as inhalation," Edwards says. "Its greater stability at room temperature and viability ultimately could provide a more practical approach for creating and delivering a vaccine throughout the world.”

Steve Bradt | EurekAlert!
Further information:

Further reports about: BCG Edwards Tuberculosis drying

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>