Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harvard scientists partner to develop and distribute new tuberculosis vaccine

20.02.2007
Low-cost scaleable solution could improve TB care, slow spread of HIV/AIDS in developing world

Bioengineers and public health researchers at Harvard University have developed a novel spraying method for delivering the most common tuberculosis (TB) vaccine, providing a new low-cost and scaleable technique that offers needle-free delivery and greater stability at room temperature than existing methods. The process could one day provide a better approach for vaccination against TB and help prevent the related spread of HIV/AIDS in the developing world.

Researcher David Edwards will describe the finding -- and ongoing work to encourage widespread use of the new vaccine in the developing world -- this week at the annual meeting of the American Association for the Advancement of Science in San Francisco.

Edwards, an international leader in aerosol drug and vaccine delivery, sees great promise for the advance, which he and his colleagues hope to develop in the next few years through a partnership with the international not-for-profit Medicine in Need (MEND), based in Cambridge, Mass., Paris, and Cape Town.

... more about:
»BCG »Edwards »Tuberculosis »drying

His research, as well as the efforts to distribute the new vaccine in conjunction with MEND, are supported by a Grand Challenge Grant from the Bill and Melinda Gates Foundation.

"With the increasing incidence of tuberculosis and drug-resistant disease in developing countries due to HIV/AIDS, there is a need for vaccines that are more effective than the present Bacillus Calmette-Guérin (BCG) vaccine," says Edwards, the Gordon McKay Professor of the Practice of Biomedical Engineering in Harvard's School of Engineering and Applied Sciences. "An optimal new vaccine would provide a safe and more consistent degree of protection by eliminating needle injection and refrigerated storage."

BCG, the most widely administered childhood vaccine in the world with 100 million infant administrations annually, is presently dried by freezing and delivered by needle injection. The commercial formulation requires refrigerated storage and has shown variable degrees of protection against tuberculosis in different parts of the world. Because of such limitations, public health experts and physicians have long seen a need for alternatives to the traditional BCG vaccine and current treatment strategies.

The spray drying process Edwards developed for the BCG vaccine is similar to the way manufacturers prepare powdered milk. In fact, Edwards's first exposure to the spray drying process occurred when he was working with a spray dryer to produce highly respirable drug aerosols in a food science lab.

While spray drying of small and large molecules is common in the food, cosmetic, and pharmaceutical industries, the method has not been commonly used for drying cellular material. Most important, the new technique enables the BCG vaccine, and potentially other bacterial and viral-based vaccines, to be dried without the traditional problems associated with standard freezing.

"Unlike traditional freezing techniques, spray drying is lower-cost, easily scaleable for manufacturing, and ideal for use in needle-free formulations, such as inhalation," Edwards says. "Its greater stability at room temperature and viability ultimately could provide a more practical approach for creating and delivering a vaccine throughout the world.”

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: BCG Edwards Tuberculosis drying

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>