Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cancer is a stem cell issue

There is an urgent reason to study stem cells: stem cells are at the heart of some, if not all, cancers. Mounting evidence implicates a clutch of rogue stem cells brandishing ‘epigenetic’ marks as the main culprits in cancer. Wiping out tumours for good, some biologists believe, depends on uprooting these wayward stem cells.

A team in the Netherlands has uncovered a key protein that could stop these stem cells from becoming malignant. “This is a hot topic in the cancer field,” Maarten van Lohuizen of The Netherlands Cancer Institute, Amsterdam told participants at a EuroSTELLS workshop, held in Montpellier, France, 23-24 January. “To be successful in cancer therapy you need to target these stem cells: they are intrinsically resistant to chemotherapy.”

Polycomb proteins have emerged as key players in cancer pathogenesis. They are powerful epigenetic regulators that normally silence genes without altering the cell’s DNA. Compounds that regulate polycomb could result in novel anticancer drugs that shrink malignant tissue, and prevent cancer recurrence, a common problem with most chemotherapies.

That tumours and stem cells have much in common has been known for many years. Both self-renew and both spawn many different types of cells. But only recently, new techniques have enabled biologists to identify stem cells buried in tumours.

... more about:
»Lohuizen »Protein »polycomb »tumours

Van Lohuizen has found that stem cells in cancerous tissues are locked in an immature state in which they carry on multiplying instead of maturing into specific tissues. “Some resistant cancer cells don’t listen to the ‘stop’ signal any more,” he explains. That stop sign is delivered by the polycomb proteins. They silence several genes at once by affecting the way the DNA is compacted into chromatin fibres, without altering the DNA sequence.

Normally, the main role of the polycomb complex is to repress genes during development or when stem cells are needed for tissue maintenance. But an aberrant polycomb spells trouble. In mice where polycomb proteins have been genetically disabled, van Lohuizen has seen that the cells become invasive and trigger cancerous growth. “This may be why gliomas are such lethal tumours, because these stem cells become highly migratory,” van Lohuizen points out.

The hunt is now on for therapeutic agents that target these budding cancer stem cells. The Dutch researcher is optimistic that used in combination with chemotherapy, such compounds will also prevent cancer reigniting after treatment. “We have to be very careful because [these compounds] will also regulate normal stem cell behaviour. It is a fine balance,” he noted.

EuroSTELLS is the European Collaborative Research (EUROCORES) programme on “Development of a Stem Cell Tool Box” developed by the European Science Foundation.

The European Science Foundation (ESF) provides a platform for its Member Organisations to advance European research and explore new directions for research at the European level.

Established in 1974 as an independent non-governmental organisation, the ESF currently serves 75 Member Organisations across 30 countries.

Thomas Lau | alfa
Further information:§ion=6&year=2007&newsrelease=164

Further reports about: Lohuizen Protein polycomb tumours

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>