Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Results of largest ever genome scan for autism out

20.02.2007
The genomes of the largest collection of families with multiple cases of autism ever assembled have been scanned and the preliminary results published in Nature Genetics (February 18, 2007). They provide new insights into the genetic basis of autism.

The research was performed by more than 120 scientists from more than 50 institutions representing 19 countries. In the UK, work was carried out at The University of Manchester, the Institute of Psychiatry at King’s College, London and the University of Oxford.

The international collaboration started in 2002 when researchers from around the world decided to come together and share their samples, data, and expertise to facilitate the identification of autism susceptibility genes. They formed the Autism Genome Project.

The world-wide consortium of scientists made the most of its large sample of 1,200 families, using “gene chip” technology to look for genetic similarities in autistic people. The AGP also scanned DNA from these families for copy number variations (CNV), or sub-microscopic genomic insertions and deletions that scientists believe might be involved with this and other common diseases.

... more about:
»Autism »Genetic »Genom »LED »families

The innovative combination of these two approaches implicates a previously unidentified region of chromosome 11, and neurexin 1 - a member of a family of genes believed to be important in the contact and communication of neurons. The neurexin finding in particular highlights a special group of neurons called glutamate neurons and the genes affecting their development and function, suggesting they play a critical role in autism spectrum disorders.

The first phase of the effort – the assembly and scanning of the largest autism DNA collection ever – was funded by Autism Speaks, a non-profit organisation dedicated to increasing awareness of autism and raising money to fund autism research, and the US National Institutes of Health.

Phase two of the project, which will build on the success of the linkage scan, is now being launched. It represents a £7.44 million investment over three years by Autism Speaks, the UK Medical Research Council (MRC), the Health Research Board of Ireland (HRB), Genome Canada and partners, Canadian Institutes for Health Research (CIHR), Southwest Autism Research and Resource Center (SARRC), and the Hilibrand Foundation. This unique combination of international, public and private partners funding a consortium of clinicians and scientists is unprecedented in the field of autism research.

Professor Tony Monaco from the University of Oxford’s Wellcome Trust Centre for Human Genetics led the funding bid, and the International Molecular Genetic Study of Autism Consortium (IMGSAC), led by Professors Monaco and Anthony Bailey (both University of Oxford), is a major contributor to both phases of the Autism Genome Project. The Manchester team for phase 2 includes autism genetics expert Dr Janine Lamb, who had a central role in IMGSAC’s genetic analysis, statistician Professor Andrew Pickles who is a leading international researcher in the autism field, and child psychiatrist Professor Jonathan Green, who led the clinical fieldwork in Manchester. The work links to a wider significant programme of autism research in Manchester led by Professors Pickles and Green; including national and international developmental studies and trials of autism interventions.

Professor Green said: “Autism is a very difficult condition for families – communication is taken for granted by parents of healthy children but is so greatly missed by those with autistic children. We are working now in Manchester to investigate the basic science and develop and test new treatments for the condition. We hope that these exciting results may represent a step on the way to further new treatments in the future.”

Autism Speaks co-founder and board chair, Bob Wright, said: “The identification of susceptibility genes will provide profound new insight into the basis of autism offering a route to breakthroughs in new treatments in support of families.”

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk/aboutus/news/

Further reports about: Autism Genetic Genom LED families

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>