Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fission statement

21.02.2002


Alternative yeast joins genome party.


Budding yeast Saccharomyces cerevisiae makes way for a new genome star.
© SPL



First there was budding yeast (Saccharomyces cerevisiae). Partly responsible for scientists’ survival by fermenting their staples beer and bread, they polished off its DNA sequence back in 1997.

Now the minority fungus of lab culture - fission yeast (Schizosaccharomyces pombe) - is fighting back. This week S. pombe enters the experimental big leagues, with the announcement of its completed genome1.


"For a while they could ignore us completely," says S. pombe supporter Paul Russell of the Scripps Research Institute in La Jolla, California. "Now they can’t." With only one yeast genome, "you don’t get the full story", he argues.

The two yeasts may share a common name, but S. cerevisiae and S. pombe are only distant relatives, having diverged around a billion years ago. "They’ve gone their separate ways," says evolutionary biologist Russell Doolittle of the University of California, San Diego. As they have developed different ways to solve the basic problems of cell biology, there is still much to learn from the lesser cousin.

Whereas S. cerevisiae cells sprout offspring on their sides, S. pombe divides down the middle, like human cells. The genes and proteins that control this fundamental process in S. pombe were identified by Paul Nurse, the director general of the Imperial Cancer Research Fund in London. His feat won him a share of a 2001 Nobel Prize. What’s more, S. pombe rolls up its DNA into three large chromosomes, again more reminiscent of human cells than S. cerevisiae’s sixteen tiny ones.

Quality over quantity

S. pombe’s genome highlights the dissimilarity between the two yeasts. S. pombe has 4,824 genes - about 1,000 less than its cousin, and fewer even than some bacteria. This is evidence of quality over quantity, says Nurse, who led the sequencing effort.

Despite the yeasts’ differences, "it’s what they share that’s important", says Nurse. He hopes that comparing the two genomes will reveal exactly which parts are essential for yeast life.

Nurse’s team has already compared the S. pombe genome to another five completed ones - those of budding yeast, the nematode worm Caenorhabditis elegans, the fruit fly (Drosophila), mustard weed (Arabidopsis thaliana) and humans - to find commonalities. All six organisms are ’eukaryotes’ - unlike bacteria, they package up their DNA and protein production into distinct compartments within the cell. The team identified a toolkit of some 60 genes that are essential for organizing and dividing eukaryotic cells.

Armed with the genome, S. pombe researchers hope to wade into its proteome, identifying all its proteins and how they interact. But once again, they’re playing catch-up - budding-yeast researchers are well on their way towards this goal.

Still, S. pombe scientists are used to struggling for recognition. And, despite a slow start and early rivalry, "no one would argue for only one yeast now", says Russell.

Scientists still harking after S. cervisiae’s brewing power may be won over by S. pombe’s potential. First described by Swiss researcher Lindner in 1893, he isolated it from East African millet beer - and named it after the Swahili word for beer, pombe.

References


  1. Wood, V. et al. The genome sequence of Schizosaccharomyces pombe. Nature, 415, 871 - 880, (2002).


HELEN PEARSON | © Nature News Service

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>