Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disposable sensor uses DNA to detect hazardous uranium ions

16.02.2007
Researchers at the University of Illinois at Urbana-Champaign have developed a simple, disposable sensor for detecting hazardous uranium ions, with sensitivity that rivals the performance of much more sophisticated laboratory instruments.

The sensor provides a fast, on-site test for assessing uranium contamination in the environment, and the effectiveness of remediation strategies, said Yi Lu, a chemistry professor at Illinois and senior author of a paper accepted for publication in the Proceedings of the National Academy of Sciences, and posted on its Web site.

“A unique feature of our uranium sensor is that it contains a small piece of DNA, the same basic building blocks of our genes,” said Lu, who also is a researcher at the university’s Beckman Institute for Advanced Science and Technology, and at the Center of Advanced Materials for the Purification of Water with Systems. “Our sensor combines the high metal ion selectivity of catalytic DNA with the high sensitivity of fluorescence detection.”

While most DNA is double stranded, the catalytic DNA Lu’s research group uses has a single strand region that can wrap around like a protein. In that single strand, the researchers fashion a specific binding site – a kind of pocket that can only accommodate the metal ion of choice.

... more about:
»DNA »catalytic »hazardous »uranium

In this case, the researchers chose to detect uranyl, the most soluble species of uranium ion and the one that poses the greatest threat to human life.

To search for the unique sequence of DNA that could distinguish uranyl from other metal ions, the researchers used a combinatorial approach called in vitro selection. Simple and cost-effective, the selection process can sample a very large pool of DNA (up to 1,000 trillion molecules), amplify the desired sequence by the polymerase chain reaction, and introduce mutations to improve performance.

Lu, with collaborators at Illinois, the Construction Engineering Research Laboratory, Oregon State University and Oak Ridge National Laboratory, assembled the uranium sensor and tested it on soils containing varying amounts of uranium. The presence of uranyl causes catalytic cleavage of the DNA and release of the fluorophore, resulting in a dramatic increase of fluorescence intensity. With a detection sensitivity of 11 parts per trillion, the disposable sensor rivaled the performance of much more sophisticated laboratory instruments.

In 2000, Lu’s research group used the same catalytic DNA process to create a simple but effective lead sensor. “This latest success demonstrates that our methodology can be used to make cost-effective sensors for other hazardous metals, as well, with extremely high sensitivity and selectivity,” Lu said. “We can also construct sensor arrays that detect and quantify many metal ions simultaneously.”

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

Further reports about: DNA catalytic hazardous uranium

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>