Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State researchers improve soy processing by boosting protein and sugar yields

16.02.2007
Graduate student Bishnu Karki turned on an ultrasonic machine in an Iowa State University laboratory. With a loud screech, the machine's high-frequency sound waves churned a mixture of soy flakes and cold water. And that churning could be a major boost to soy processors and the food industry.

Adding ultrasonic pretreatment to soy processing boosts and improves the yield of protein that can be added to foods, said Samir Khanal, an Iowa State research assistant professor of civil, construction and environmental engineering. In Iowa State laboratory tests, exposing ground and defatted soy flakes to ultrasonics has increased the release of soy proteins by 46 percent.

Khanal said the ultrasonic treatment also breaks some of the bonds that tie sugars to the soy proteins. Separating the sugars from the proteins improves the quality of the proteins. It also boosts the sugar content of the soy whey that's left after processing. Ultrasonic treatment boosted sugar yields by 50 percent.

The low-cost, sugar-enriched whey can replace an expensive compound used to grow lactic acid bacteria, Khanal said. The bacteria produce nisin, a valuable natural food preservative that's also used in cosmetic and health care products such as mouthwash and toothpaste.

... more about:
»Boost »Researchers »Soy »processing

"Our preliminary economic analysis showed that the proposed technology could generate revenue up to $230 million per year from a typical plant producing 400 million pounds of soy protein isolate," says a summary of the research project. "This is a major breakthrough in the soy processing industry."

Khanal leads a research team that includes Hans van Leeuwen, an Iowa State professor of civil, construction and environmental engineering; David Grewell, an Iowa State assistant professor of agricultural and biosystems engineering; Stephanie Jung, an Iowa State assistant professor of food science and human nutrition; and Buddhi Lamsal, a senior scientist at Kansas State University in Manhattan. Larry Johnson, the director of Iowa State's Center for Crops Utilization Research, and Tony Pometto, an Iowa State professor of food science and human nutrition, are assisting the project. Iowa State graduate students Bishnu Karki, who's studying environmental science, and Debjani Mitra, who's studying biorenewable resources and technology, are also working on the research project.

The research is supported by a grant of $81,977 from the Grow Iowa Values Fund, a state economic development program. Cargill and other major food processors are supporting the research project with materials and supplies. And the Iowa Biotechnology Byproducts Consortium is supporting the nisin portion of the project with a grant of $155,711.

Khanal said the technology has boosted protein and sugar release in batch-by-batch lab tests. The researchers will now try lab tests to see how it works in the same kind of continuously flowing stream that would be used in a soy processing plant.

The researchers are optimistic the technology can be effective and efficient in a full-size soy processing plant. Van Leeuwen said the ultrasonic treatments only require a few seconds and can be done in a pipeline connecting a plant's soy processing units. He also said the capital costs and power requirements for ultrasonics are small.

Yes, Khanal said, "I think this is commercially viable."

Samir Khanal | EurekAlert!
Further information:
http://www.iastate.edu

Further reports about: Boost Researchers Soy processing

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>