Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein sensor for fatty acid buildup in mitochondria

16.02.2007
St. Jude study shows PanK2 enzyme within mitochondria is triggered by the first step in fatty acid breakdown

Just as homes have smoke detectors, cells have an enzyme that responds to a buildup of fatty acids by triggering the production of a key molecule in the biochemical pathway that breaks down these fatty acids, according to investigators at St. Jude Children's Research Hospital. This breakdown of fatty acids, in turn, provides the cell energy while reducing the chance that excess fatty acids will accumulate.

The St. Jude discovery explains how the fatty acid-sensing enzyme PanK2 tailors production of this key molecule, coenzyme A (CoA), to the cell's energy demands. Understanding PanK2 function is also important because mutations in this enzyme cause an inherited neurodegenerative disease. A report on the discovery appears in the online pre-publication issue of Proceedings of the National Academy of Sciences (PNAS).

"The results of this study show how and where a critical biochemical pathway for fatty acid breakdown is controlled by a specific enzyme," said Charles Rock, Ph.D., a member of the Infectious Diseases department at St. Jude. "It offers an explanation of why the absence of this enzyme can cause mitochondrial malfunction." Rock is a co-author of the PNAS paper.

The researchers showed that PanK2, is suppressed by CoA—the molecule this enzyme triggers the cell to make. CoA normally binds tightly to PanK2, shutting it down. When a buildup of fatty acids occurs in the cell, a molecule called carnitine shuttles them into the mitochondria. This combination of a fatty acid and carnitine, called acylcarnitine, liberates PanK2 from the bondage of CoA. Once free, PanK2 resumes its job of initiating the production of more CoA, which is needed for the breakdown of fatty acids—a process called beta-oxidation.

The St. Jude team demonstrated that PanK2 does its job of responding to increasing levels of fatty acids within a structure called the mitochondrion. Mitochondria are bags of enzymes in the cell that extract energy from nutrients. Most of the cell's energy-rich molecules called ATP are made in the mitochondria, and these ATP molecules serve as the "currency" with which the cell can "buy" all of the biochemical reactions that keep the cell alive and performing its functions. Virtually all cells have mitochondria, and disruption of their function can cause a variety of diseases.

"Our study showed the connection between the location of PanK2 in the mitochondria and its role in as a sensor of energy demand," said Yong-Mei Zhang, Ph.D., a researcher in the Infectious Diseases department at St. Jude and the report's senior author. "This is an ideal location for PanK2 because it can detect acylcarnitine as it enters the mitochondrion."

The importance of PanK2 is especially evident in individuals who have mutations in the PANK2 gene that give rise to PanK-associated neurodegeneration (PKAN), an inherited disease in which patients have intellectual impairment and difficulty in walking and speaking.

"The new understanding of PanK2 activity and its location in the cell suggests a potential treatment strategy for PKAN," said Roberta Leonardi, Ph.D., a postdoctoral fellow in the St. Jude Infectious Diseases department and first author of the PNAS article. "For example, reducing the level of fat in the diet and taking carnitine supplements might help PKAN patients cope with this debilitating disease."

"One of our challenges is how to develop an animal model of this disease that we can use to determine if reduced dietary fat and carnitine supplements offer hope in the treatment of PKAN in humans," said Suzanne Jackowski, Ph.D., a member of the Infectious Diseases department at St. Jude and a co-author of the report.

Summer Freeman | EurekAlert!
Further information:
http://www.stjude.org

Further reports about: CoA Infectious Diseases PKAN PanK2 buildup carnitine mitochondria

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>