Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is there a pilot in the insect?

15.02.2007
When they fly, insects use their vision for piloting, just like human pilots.

The electric signals from their facetted eyes travel through specialized neurons to stimulate the wing muscles, which let the insects correct their flight and avoid crashes. Could these same neurons be used in a sort of "automatic pilot"? This is what Nicolas Franceschini, Franck Ruffier and Julien Serres have just shown.

These biorobotics specialists from the Movement and Perception Laboratory (CNRS/Université de la Méditerranée) in Marseille, France have revealed an automatic mechanism called the "optic flow regulator" that controls the lift force. The researchers obtained these results by modeling the overland flight navigation of insects using experiments carried out on OCTAVE, a captive flying robot microhelicopter that can reproduce much of the mysterious natural insect behavior. Their work is published online in Current Biology, February 8, 2007.

How does a tiny creature like a fly or a bee, with a brain the size of a pinhead, manage to make such a magnificent job of controlling its flight, and avoid crashing to the ground? Today it is known that the sensory motor prowess of these flying miniatures depends on the nervous system, made up of between one hundred thousand and one million neurons. When an insect, bird or pilot flies over land, the image of the ground below sweeps from front to back across the central part of the visual field, creating an "optic flow", which is defined as the angular speed at which the ground contrasts move past.

... more about:
»Franceschini »Neuron »Optic »Pilot »ROBOT »headwind

By definition, this angular speed is equal to the ratio of the horizontal speed and the altitude. What these authors call an "optic flow regulator" is a reflex that keeps the optic flow, and thus the speed/altitude ratio, at a constant value. If the insect changes speed, this reflex will make it change altitude so that ratio remains constant. Adjusting the speed/altitude ratio means that the insect has no need to measure either its speed or its altitude.

If there is a strong headwind, its forward speed will be reduced. Thus its optic flow regulator will constantly force it to reduce altitude so that the optic flow always remains at the reference value. The insect has to make a forced landing against the wind, but a safe landing, because it takes place at a vertical speed of zero. Reactions of this type to a headwind have been described countless times in insects and even in birds. They are also observed on the microhelicopter each time it faces a laboratory-produced headwind, reinforcing the hypothesis that flying creatures have an optic flow regulator.

The very simple control scheme proposed takes into account 70 years of often surprising observations of the behavior of winged insects. It accounts for the fact not only that insects descend facing a headwind and ascend with a tailwind, but also that honeybees land with a constant slope and drown when crossing mirror-smooth water1.

Behind this astonishing behavior, hidden in the insect's cockpit, are movement detector neurons that act as optic flow sensors. The team patiently decoded the functioning of these neurons using ultra-fine microelectrodes (with a diameter of a thousandth of a millimeter) and a specially designed microscope. They then produced an electronic microcircuit based on this principle. The most recent version weighs only 0.2 grams. This is the neuron that does most of the work on board the microhelicopter.

The optic flow regulator helps explain how an insect manages to fly, even in unfavorable wind conditions, without measuring its ground height, groundspeed or descent speed, in other words without using any of the usual aircraft onboard flight aids like radar, GPS, radio-altimeters and variometers. An insect brain wouldn't cope with these cumbersome, heavy, energy-consuming devices.

This important work shows that this new science called biorobotics, that the team from Marseille started in 1985, is important both for fundamental and applied research. The method consists in using robotics models to test biological principles that are perceived only vaguely at the outset.

These hidden forces underlying animal behavior can then be understood more exactly by permanently shuttling between biology and robotics. These principles have been tried and tested for millions of years, and today they need to be applied to aerospace, because the phases in which an airship or a space module navigates close to the ground are absolutely crucial.

The researchers and CNRS have filed an international patent for the "fly automatic pilot".

1. When ripples are totally absent from a pond surface, for example, the (natural and artificial) optic flow sensors are put out of action because there are no contrasts. This results in insects being drawn irresistibly downwards.

Photo 1 - A Bluebottle fly (Calliphora) photographed head on through a special microscope (Lieberkühn microscope) built in the lab from two bicycle headlamps. After Franceschini, N. "From insect vision to robot vision: Re-construction as a mode of discovery" In: "Sensors and Sensing in Biology and Engineering", Barth, F.G., Humphrey, J. A., Secomb T.W. (Eds.), Springer, Berlin, 2003, pp. 223-235) © N. Franceschini, CNRS. (This picture is available from the CNRS photo-library, +33(0)1 45 07 57 90, phototheque@cnrs-bellevue.fr).

Photo 2 – A fly fitted with a microelectrode "leash" that records the activity of certain visual neurons during locomotion. © CNRS Photothèque / Hubert RAGUET. (This picture is available from the CNRS photo-library, +33(0)1 45 07 57 90, phototheque@cnrs-bellevue.fr).

REFERENCE

A bio-inspired flying robot sheds light on insect piloting abilities, Current biology 17, 4 (February 20). Franceschini, N., Ruffier, F., Serres, J. (2007).

Monica McCarthy | EurekAlert!
Further information:
http://www.cnrs-dir.fr

Further reports about: Franceschini Neuron Optic Pilot ROBOT headwind

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>