Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flu shot might also offer some protection against H5N1

15.02.2007
St. Jude mouse and human studies show that the N1 protein in the seasonal flu vaccine can trigger an antibody response to avian flu virus

The yearly influenza vaccine that health officials urge people to get each fall might also offer certain individuals some cross protection against the H5N1 virus, commonly known as bird flu, according to investigators at St. Jude Children's Research Hospital.

The investigators found that a protein present in the annual influenza shot can act as a vaccine itself and trigger some cross protection against H5N1 in mice; and that some human volunteers already had antibodies directed against the same part of this virus. Cross protection occurs when the immune response triggered by a vaccine designed to protect against one germ also offers some protection against a different germ.

The finding also suggests that the annual influenza vaccine might be especially beneficial to populations in areas of the world where H5N1 routinely infects birds and poses a threat to people.

"The jury is still out on whether the seasonal flu vaccine is definitely a reliable way to offer people some protection from H5N1," said Richard J. Webby, Ph.D., assistant member in the Virology division of the Department of Infectious Diseases at St. Jude. "But our initial results suggest that this is a research trail worth following." Webby is senior author of the report that appears in the Feb. 13 issue of the online journal PLoS Medicine at www.plosmedicine.org.

The key to the apparent cross protection against H5N1 provided by the human influenza vaccine appears to be the antibodies produced in response to a protein called neuraminidase on the surface of the virus. Neuraminidase, which is noted as "N" in the names of viruses, is one of the major proteins on the surface of human and avian influenza viruses; and it can often be found in human influenza vaccines. However, the amount of "N" in an influenza vaccine can vary widely depending on the company that produces it.

The other protein is hemagglutinin, or "H." The variations of "H" and "N" found on viruses are numbered; and in the case of the avian influenza virus, considered by experts to be a major threat to humans, the proteins are designated H5 and N1.

"The presence of the N1 protein in both the human flu and the bird flu virus helped to convince us to look for evidence that immunity to human strains of flu might also trigger some antibody response to H5N1," Webby said.

The investigators first vaccinated mice using DNA that coded for N1 from a human influenza virus. This ensured that the mice would make only N1 and not one of the hemagglutinin proteins, thus eliminating any chance of confusion over whether their immune systems were vaccinated against hemagglutinin, neuraminidase or both.

The team showed that all 11 vaccinated mice survived infection with a virus genetically modified to make human N1, while half of another group of vaccinated mice survived infection with H5N1 itself.

The St. Jude investigators then showed that the antibodies made against N1 protected the mice against the challenges. Specifically, the team collected the serum, the antibody-containing liquid of blood, from vaccinated mice and injected it into unvaccinated mice. Six of 13 mice getting the antibody-containing serum survived infection with the H5N1 virus, indicating that antibodies against human N1 from the vaccinated mice offered some protection against H5N1.

Finally, the team tested samples of serum from human volunteers to see if they contained antibodies that reacted against the N1 of H5N1. Sera from 31 of 38 volunteers reacted against the N1 of the human influenza virus H1N1, while serum from nine of these individuals showed low activity against the N1 protein of an H5N1 from Vietnam. It was not clear whether these individuals had developed antibodies from previous seasonal vaccination or from exposure to influenza viruses that carried N1.

"Although the number of human donors in this study was limited, the results show that some individuals have levels of antibodies that are high enough to react against H5N1," Webby said.

If the initial findings of the St. Jude study are confirmed in the future, there may be a greater interest in examining the amount of neuraminidase in yearly influenza vaccines, according to Matthew Sandbulte, Ph.D., a postdoctoral fellow at the Food and Drug Administration, who did much of the work on this project.

"Hemagglutinin is more abundant than neuraminidase on viruses and is a better target for protective immunity, so current vaccines are designed to trigger immune responses mostly to hemagglutinin," Sandbulte said. "That is why vaccines contain standard amounts of hemagglutinin, but varying amounts of neuraminidase. But if further research confirms that the N1 part of the influenza vaccine offers some cross protection against H5N1, it will be desirable to have a better idea of the amount of N1 present in these vaccines."

An implication of the ability of N1 immunity conferring some degree of protection against H5N1 is that younger people who have a shorter history of exposure to the human influenza virus H1N1 might have less existing immune protection against this virus. "That could mean such people are more susceptible to H5N1 infection than adults," Sandbulte said.

Summer Freeman | EurekAlert!
Further information:
http://www.stjude.org
http://www.plosmedicine.org

Further reports about: Antibodies H5N1 Influenza Neuraminidase Webby hemagglutinin

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>