Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joint university collaboration boosts research into human vision

15.02.2007
Researchers from the Psychology departments of Queen’s University Belfast, University College London and Saint Andrew’s University have made an important finding which will inform research aimed at the development of intelligent robots capable of seeing in a similar way to humans.

Motion-defined transparency is a common occurrence in the natural environment where multiple directions of motion occur in the same spatial region, for example when one sees fish in a fast flowing stream, and is a phenomenon that has invited much scientific discussion.

The research, a joint collaboration between Dr William Curran at Queen’s, Dr Paul B Hibbard of the University of St Andrews and Professor Alan Johnston of University College London, examined whether the human visual system detects transparently moving surfaces simultaneously or whether the directions are processed in a serial manner, and was published in a paper by the Royal Society on 7 February.

Previous research had purported to show that the human brain processes the different motion directions in a transparent scene in a serial manner. These findings were based on experiments in which the transparent motions were presented in the same depth plane (ie were the same distance from the viewer). The team’s research challenged these previous findings by testing people’s ability to detect the direction of transparently moving surfaces when the surfaces are placed at different depths. Their results provided evidence that the human brain does, in fact, process transparent motion directions simultaneously.

... more about:
»Transparent »direction

Speaking about the work, Dr Curran said, “This adds another small piece to the incredibly complex jigsaw which is the human visual system. It is also relevant to researchers who wish to develop artificial visual systems that ‘see’ in the same way as humans do.”

The research paper can be viewed on the Royal Society website at http://www.pubs.royalsoc.ac.uk/

Lisa Mitchell | alfa
Further information:
http://www.pubs.royalsoc.ac.uk/

Further reports about: Transparent direction

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Efficient time synchronization of sensor networks by means of time series analysis

24.01.2017 | Information Technology

Immune Defense Without Collateral Damage

24.01.2017 | Life Sciences

Open, flexible assembly platform for optical systems

24.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>