Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research team discovers a chemical pathway that causes mice to overeat and gain weight

14.02.2007
Research could ultimately aid in development of obesity treatments through understanding the inflammatory aspects of obesity

The Scripps Research team, led by neuroscientists Manuel Sanchez-Alavez and Tamas Bartfai, discovered that mice genetically altered to lack a molecule known as the EP3 receptor tend to be more active during their normal sleep cycle and to eat more. In the study, this led to weight increases of up to 30 percent relative to mice with the receptors.

The EP3 receptor is one of four types of receptors for prostaglandin E2 (PGE2), the most important inflammatory mediator that controls a variety of physiological functions including fever, fertility, and blood pressure. The most common anti-inflammatory and analgesic treatments like ibuprofen are aimed at reducing PGE2 signaling at all four prostaglandin receptors.

The absence of EP3 receptors has long been known to prevent fever response in mice, and it was this effect that the Scripps Research team was originally studying. Previous research on mice lacking the receptors had focused on fever inhibition until mice were about three months old. The team wanted to better understand the process by studying if fever inhibition continued later in life.

... more about:
»EP3 »PGE2 »Sanchez-Alavez »receptor

When the mice were four to five months old, the researchers made a startling discovery. The older mice still did not develop fever, but the researchers noticed that these mice were gaining weight.

"The experimental mice were clearly getting heavier than their wild type litter mates, the control mice," says Sanchez-Alavez. "We realized there was something interesting going on with these animals, so we started watching their behavior at night and during the day."

During continuous monitoring of temperature and motor activity, the researchers realized that the mice without the EP3 receptors were more active during the light hours-the nocturnal mice's "night"-and, more importantly, were eating during this time. The increased activity led to higher body temperatures, but this did not burn enough extra calories to balance the additional eating, so the mice weighed 15 to 30 percent more than control mice.

Determining why the lack of EP3 receptors causes increased activity and eating will likely take a great deal of experimentation. "It's a very complex phenomenon to explore," says Sanchez-Alavez. He notes that the next step in the research will be to determine whether the obese phenotype observed in the EP3 receptor deficient mice is dependent on the lack of EP3 in the central nervous system and/or peripheral organs, as EP3 is expressed in both locations.

The research has interesting implications for scientists' understanding of appetite regulation. PGE2 is known to stimulate the release of leptin-an important hormone secreted by white fat cells and a suppressor of appetite. However, in this model, lack of EP3 did not prevent leptin increase. "Something is happening there in that circuit," says Sanchez-Alavez. "The PGE2 and leptin may be interacting and controlling eating behavior."

Bartfai notes, "Inflammation as part of the obesity and metabolic syndrome is being recognized to an increasing degree. These data directly couple the lack of a particular type of inflammatory signaling via EP3R with leptin and insulin increase, glucose tolerance, and white fat accumulation, and thus may provide a very important animal model for determining the importance of inflammation in obesity and in the conversion of obesity to type 2 diabetes."

Ultimately, better understanding of the role of EP3 receptors in feeding and obesity could lead to the development of treatments that could prevent or reverse these conditions.

Along with Sanchez-Alavez and Bartfai, Izabella Klein, Sara Brownell, Iustin Tabarean, Christopher Davis, and Bruno Conti, all of Scripps Research, were authors on the paper, "Night eating and obesity in the EP3R deficient mouse."

Marisela Chevez | EurekAlert!
Further information:
http://www.scripps.edu

Further reports about: EP3 PGE2 Sanchez-Alavez receptor

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>