Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research team discovers a chemical pathway that causes mice to overeat and gain weight

14.02.2007
Research could ultimately aid in development of obesity treatments through understanding the inflammatory aspects of obesity

The Scripps Research team, led by neuroscientists Manuel Sanchez-Alavez and Tamas Bartfai, discovered that mice genetically altered to lack a molecule known as the EP3 receptor tend to be more active during their normal sleep cycle and to eat more. In the study, this led to weight increases of up to 30 percent relative to mice with the receptors.

The EP3 receptor is one of four types of receptors for prostaglandin E2 (PGE2), the most important inflammatory mediator that controls a variety of physiological functions including fever, fertility, and blood pressure. The most common anti-inflammatory and analgesic treatments like ibuprofen are aimed at reducing PGE2 signaling at all four prostaglandin receptors.

The absence of EP3 receptors has long been known to prevent fever response in mice, and it was this effect that the Scripps Research team was originally studying. Previous research on mice lacking the receptors had focused on fever inhibition until mice were about three months old. The team wanted to better understand the process by studying if fever inhibition continued later in life.

... more about:
»EP3 »PGE2 »Sanchez-Alavez »receptor

When the mice were four to five months old, the researchers made a startling discovery. The older mice still did not develop fever, but the researchers noticed that these mice were gaining weight.

"The experimental mice were clearly getting heavier than their wild type litter mates, the control mice," says Sanchez-Alavez. "We realized there was something interesting going on with these animals, so we started watching their behavior at night and during the day."

During continuous monitoring of temperature and motor activity, the researchers realized that the mice without the EP3 receptors were more active during the light hours-the nocturnal mice's "night"-and, more importantly, were eating during this time. The increased activity led to higher body temperatures, but this did not burn enough extra calories to balance the additional eating, so the mice weighed 15 to 30 percent more than control mice.

Determining why the lack of EP3 receptors causes increased activity and eating will likely take a great deal of experimentation. "It's a very complex phenomenon to explore," says Sanchez-Alavez. He notes that the next step in the research will be to determine whether the obese phenotype observed in the EP3 receptor deficient mice is dependent on the lack of EP3 in the central nervous system and/or peripheral organs, as EP3 is expressed in both locations.

The research has interesting implications for scientists' understanding of appetite regulation. PGE2 is known to stimulate the release of leptin-an important hormone secreted by white fat cells and a suppressor of appetite. However, in this model, lack of EP3 did not prevent leptin increase. "Something is happening there in that circuit," says Sanchez-Alavez. "The PGE2 and leptin may be interacting and controlling eating behavior."

Bartfai notes, "Inflammation as part of the obesity and metabolic syndrome is being recognized to an increasing degree. These data directly couple the lack of a particular type of inflammatory signaling via EP3R with leptin and insulin increase, glucose tolerance, and white fat accumulation, and thus may provide a very important animal model for determining the importance of inflammation in obesity and in the conversion of obesity to type 2 diabetes."

Ultimately, better understanding of the role of EP3 receptors in feeding and obesity could lead to the development of treatments that could prevent or reverse these conditions.

Along with Sanchez-Alavez and Bartfai, Izabella Klein, Sara Brownell, Iustin Tabarean, Christopher Davis, and Bruno Conti, all of Scripps Research, were authors on the paper, "Night eating and obesity in the EP3R deficient mouse."

Marisela Chevez | EurekAlert!
Further information:
http://www.scripps.edu

Further reports about: EP3 PGE2 Sanchez-Alavez receptor

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>