Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New protein super-family discovered with critical functions for animal life

14.02.2007
The following press release refers to an upcoming article in PLoS ONE. The release has been provided by the article authors and/or their institutions. Any opinions expressed in this are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

Biologists have discovered a new super-family of developmental proteins that are critical for cell growth and differentiation and whose further study is expected to benefit research on cancer and the nerve-cell repair.

The protein super-family, which existed before the emergence of animals about 850 million years ago, is of major importance for understanding how life evolved in primordial times. The discovery will be described in the 14 February 2007 issue of the journal PLoS ONE.

"This super-family is highly divergent, even in animals with an ancient lineage such as the sea anemone. This super-family also evolves rapidly, so its proteins may provide a model system for investigating how rapidly mutating genes contribute to, and are likely necessary for, the diversity and adaptability of animal life," explains Penn State Assistant Professor Randen Patterson, the senior author of the study. The new protein superfamily is named "DANGER," an acronym for "Differentiation and Neuronal Growth Evolve Rapidly."

... more about:
»DANGER »Genome »PLoS »Patterson »super-family

The discovery was led by Patterson and Damian van Rossum, a postdoctoral scholar at Penn State in University Park, Pennsylvania, and collaborators at Johns Hopkins University in Baltimore, Maryland. "Most DANGER proteins have not been researched, but from what little we do know these proteins, they are critical for cell growth and differentiation," van Rossum says.

Because so many genomes for diverse organisms have been sequenced and annotated, the discovery of a new and deeply rooted protein family is quite rare. The relationship of the six family members comprising the DANGER super-family escaped detection due to the high rates of mutations between family members, although a few family members had been detected previously and had been shown to control the differentiation of cells into organs in worms, fish, and mice. Deletion of these their DANGER genes led to gross structural changes and prenatal death.

These findings also have clinical relevance, according to the researchers. "Many DANGER proteins are surrounded by transposable elements, which are pieces of DNA around genes that help the genes migrate back and forth throughout the genome," Patterson says. Because of this feature, DANGER genes can move throughout the genome, which could have positive or negative health consequences. "One member of the gene family resides in the genome at an area responsible for a human disease, the Smith-Magenis syndrome, which results in severe physical and mental retardation," Patterson explains. "DANGER genes also contain transposable elements that may participate in the genetic disturbances associated with chronic myeleoid leukemia."

One member of the super-family has been identified as playing a role in the development of the nervous system. "In cell culture and spinal cord neurons, the protein coded for by this gene stimulates lengthening and branching of neurons," Patterson says. Because many other DANGER proteins also are expressed in neurons, discovering their functions may be a key to deciphering the complexity of neuronal growth and development.

In addition to Patterson and van Rossum, investigators in this study include N. Nikolaidis and D. Chalkia at Penn State and D. N. Watkins, R. K. Barrow, and S. H. Snyder at Johns Hopkins. The research was supported by grants from the National Institutes of Health and the Searle Foundation.

Andrew Hyde | alfa
Further information:
http://dx.doi.org/10.1371/journal.pone.0000204
http://www.plosone.org

Further reports about: DANGER Genome PLoS Patterson super-family

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>