Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New protein super-family discovered with critical functions for animal life

14.02.2007
The following press release refers to an upcoming article in PLoS ONE. The release has been provided by the article authors and/or their institutions. Any opinions expressed in this are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

Biologists have discovered a new super-family of developmental proteins that are critical for cell growth and differentiation and whose further study is expected to benefit research on cancer and the nerve-cell repair.

The protein super-family, which existed before the emergence of animals about 850 million years ago, is of major importance for understanding how life evolved in primordial times. The discovery will be described in the 14 February 2007 issue of the journal PLoS ONE.

"This super-family is highly divergent, even in animals with an ancient lineage such as the sea anemone. This super-family also evolves rapidly, so its proteins may provide a model system for investigating how rapidly mutating genes contribute to, and are likely necessary for, the diversity and adaptability of animal life," explains Penn State Assistant Professor Randen Patterson, the senior author of the study. The new protein superfamily is named "DANGER," an acronym for "Differentiation and Neuronal Growth Evolve Rapidly."

... more about:
»DANGER »Genome »PLoS »Patterson »super-family

The discovery was led by Patterson and Damian van Rossum, a postdoctoral scholar at Penn State in University Park, Pennsylvania, and collaborators at Johns Hopkins University in Baltimore, Maryland. "Most DANGER proteins have not been researched, but from what little we do know these proteins, they are critical for cell growth and differentiation," van Rossum says.

Because so many genomes for diverse organisms have been sequenced and annotated, the discovery of a new and deeply rooted protein family is quite rare. The relationship of the six family members comprising the DANGER super-family escaped detection due to the high rates of mutations between family members, although a few family members had been detected previously and had been shown to control the differentiation of cells into organs in worms, fish, and mice. Deletion of these their DANGER genes led to gross structural changes and prenatal death.

These findings also have clinical relevance, according to the researchers. "Many DANGER proteins are surrounded by transposable elements, which are pieces of DNA around genes that help the genes migrate back and forth throughout the genome," Patterson says. Because of this feature, DANGER genes can move throughout the genome, which could have positive or negative health consequences. "One member of the gene family resides in the genome at an area responsible for a human disease, the Smith-Magenis syndrome, which results in severe physical and mental retardation," Patterson explains. "DANGER genes also contain transposable elements that may participate in the genetic disturbances associated with chronic myeleoid leukemia."

One member of the super-family has been identified as playing a role in the development of the nervous system. "In cell culture and spinal cord neurons, the protein coded for by this gene stimulates lengthening and branching of neurons," Patterson says. Because many other DANGER proteins also are expressed in neurons, discovering their functions may be a key to deciphering the complexity of neuronal growth and development.

In addition to Patterson and van Rossum, investigators in this study include N. Nikolaidis and D. Chalkia at Penn State and D. N. Watkins, R. K. Barrow, and S. H. Snyder at Johns Hopkins. The research was supported by grants from the National Institutes of Health and the Searle Foundation.

Andrew Hyde | alfa
Further information:
http://dx.doi.org/10.1371/journal.pone.0000204
http://www.plosone.org

Further reports about: DANGER Genome PLoS Patterson super-family

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>