Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harvard team creates spray drying technique for TB vaccine

13.02.2007
Low cost and scaleable solution could provide a better approach for treating TB and preventing the spread of HIV/AIDS in the developing world

Bioengineers and public health researchers have developed a novel spray drying method for preserving and delivering the most common tuberculosis (TB) vaccine. The low-cost and scaleable technique offers several potential advantages over conventional freezing procedures, such as greater stability at room temperature and use in needle-free delivery. The spray drying process could one day provide a better approach for vaccination against TB and help prevent the related spread of HIV/AIDS in the developing world.

The research team led by Yun-Ling Wong, a graduate researcher in bioengineering, and David Edwards, Gordon McKay Professor of the Practice of Biomedical Engineering, both at the Harvard School of Engineering and Applied Sciences, and Barry R. Bloom, Dean of the Harvard School of Public Health and Joan L. and Julius H. Jacobson Professor of Public Health, was sponsored in part by the Bill and Melinda Gates Foundation. The work appeared in the February 13 edition of the Proceedings of the National Academy of Sciences.

"With the increasing incidence of tuberculosis and drug resistant disease in developing countries due to HIV/AIDS, there is a need for vaccines that are more effective than the present Bacillus Calmette-Guérin (BCG) vaccine," said Wong. "An optimal new vaccine would obviate needle injection, not require refrigerated storage, and provide a safe and more consistent degree of protection."

... more about:
»BCG »Spray »drying »drying process

BCG, while the most widely administered childhood vaccine in the world, with 100 million infant administrations annually, is presently dried by freezing—or lyophilization —and delivered by needle injection. The commercial formulation requires refrigerated storage and has shown variable degrees of protection against tuberculosis in different parts of the world. Because of such limitations, public health experts and physicians have long seen a need for alternatives to the traditional BCG vaccine and current treatment strategies.

"The breakthrough for developing the spray drying process involved removing salts and cryoprotectants like glycerol from bacterial suspensions," explains Edwards. "This is counter to conventional thinking: that bacteria be dried in the presence of salts and cryoprotectants. While these substances are generally required for normal storage and freezing protocols, in the case of evaporative drying as occurs in spray drying, salt and cryoprotectants act like knives that press on the bacterial membrane with great force and inactivate the bacteria. By removing these, we managed to save the bacteria and achieve better stability."

The spray drying process developed for the BCG vaccine is similar to the way manufacturers prepare powdered milk. In fact, Edwards' first exposure to the spray drying process occurred when he was working with a spray dryer to produce highly respirable drug aerosols in a food science lab. While spray drying of small and large molecules is common in the food, cosmetic and pharmaceutical industries, the method has not been commonly used for drying cellular material. Most important, the new technique enables the BCG vaccine, and potentially other bacterial and viral based vaccines, to be dried without the traditional problems associated with standard freezing.

"Unlike traditional freezing techniques, spray drying is lower cost, easily scaleable for manufacturing, and ideal for use in aerosol (needle free) formulations, such as inhalation," says Wong. "Its greater stability at room temperature and viability ultimately could provide a more practical approach for creating and delivering a vaccine throughout the world."

Edwards, an international leader in aerosol drug and vaccine delivery, sees great promise for the advance, which he and his colleagues hope to develop in the next few years for better vaccination approaches for diseases of poverty through the international not-for-profit Medicine in Need (Mend), based in Cambridge, Paris, and Cape Town, South Africa.

"With the emergence of multidrug and extremely drug resistant TB, we hope this breakthrough is one more step to help us develop a stable vaccine to stem the tide of disease," says Bloom. "Better vaccination against TB can go a long way to addressing the current developing world health care crisis, with TB alone presently taking the lives of more than 2 million people a year. And we believe this method could also be used to improve delivery of many other vaccines."

Michael Patrick Rutter | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: BCG Spray drying drying process

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>