Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lubricant's role in keeping joints limber comes into sharper focus

13.02.2007
Using a method that allows precise measurement of the biomechanical properties of the hip joints in mice, researchers at Duke University's Pratt School of Engineering have found new evidence that an ingredient of joint fluid called lubricin plays a significant role in keeping joints limber.

The researchers say the finding offers the strongest evidence yet that treatments designed to increase levels of lubricin in humans may help stall the deterioration of arthritic joints.

The team found that the arthritic joints of mice lacking the gene that controls the production of lubricin show greater friction than do joints in normal animals. When observed at the molecular level, the surface of the mutant animals' joint cartilage also appears rougher and less stiff -- a finding that the researchers said suggests a loss of the cartilage's mechanical integrity without lubricin.

"Lubricin has been considered important, but the experiments had not been done," said Stefan Zauscher, a professor of mechanical engineering and materials science at the Pratt School. "This is the first look at the effects on biomechanics of lubricin's presence or absence."

... more about:
»cartilage »lubricin »measurement »role

Team member Jeffrey Coles, a Ph.D. student working in Zauscher's laboratory, presented the findings on Monday, Feb. 12, at the annual meeting of the Orthopaedic Research Society, in San Diego. The work was supported by the National Institutes of Health.

While lubricin had been suspected to play a role in reducing joint friction, earlier studies had focused on another constituent of joint fluid called hyaluronic acid. Injections of this material are frequently used as a treatment for osteoarthritis, the most common form of arthritis. However, the treatment seems to work primarily as an anti-inflammatory agent, Zauscher noted, doing little to prevent further joint damage.

Last year, Zauscher's group reported evidence that lubricin acts as a repellant boundary layer between joint surfaces, reducing friction by preventing contacts altogether rather than simply "greasing the wheels" http://www.pratt.duke.edu/news/index.php?story=260.

Those results stemmed from the first examination of the changing molecular forces between a model joint and glass slide as the amount of lubricin in the solution between them increased.

Now, the researchers have applied a similar technique to the molecular-level study of mouse joints, comparing normal mice to those lacking the gene for lubricin. They used an atomic force microscope (AFM) to examine the cartilage found on the surface of the ball at the top of the thigh bone that fits into the hip socket of the mice.

AFM microscopes have a sharp tip that scans the surfaces of structures at the level of individual atoms and measures the force of molecular-level interactions. In this case, the team chemically modified the tip to imitate the chemical properties of joint cartilage.

The researchers used the modified tips to probe the surface of normal and lubricin-deficient joints, gaining measurements of the amount of friction between the two surfaces. They also obtained measurements of the roughness and stiffness of the cartilage surface.

When compared with mice that have normal joint cartilage, mice lacking lubricin showed two to three times the amount of friction and their joint surfaces were more than twice as rough. The stiffness of the joint cartilage in mutant mice also was reduced by a factor of five, the researchers found. They noted that these findings are consistent with the significant tissue degeneration in early osteoarthritis.

"It's clear from our findings that lubricin is important for protecting the structural integrity of joints," Coles said.

The researchers next will examine the effects of replacing lubricin on the joint surfaces of mutant mice. They are seeking a better understanding of how lubricin carries out its role as a boundary lubricant, leading perhaps to an improved treatment option for osteoarthritis. Preliminary evidence suggests that lubricin injections may prevent, or at least slow, further deterioration of joint cartilage in the arthritic mice.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: cartilage lubricin measurement role

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>