Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lubricant's role in keeping joints limber comes into sharper focus

13.02.2007
Using a method that allows precise measurement of the biomechanical properties of the hip joints in mice, researchers at Duke University's Pratt School of Engineering have found new evidence that an ingredient of joint fluid called lubricin plays a significant role in keeping joints limber.

The researchers say the finding offers the strongest evidence yet that treatments designed to increase levels of lubricin in humans may help stall the deterioration of arthritic joints.

The team found that the arthritic joints of mice lacking the gene that controls the production of lubricin show greater friction than do joints in normal animals. When observed at the molecular level, the surface of the mutant animals' joint cartilage also appears rougher and less stiff -- a finding that the researchers said suggests a loss of the cartilage's mechanical integrity without lubricin.

"Lubricin has been considered important, but the experiments had not been done," said Stefan Zauscher, a professor of mechanical engineering and materials science at the Pratt School. "This is the first look at the effects on biomechanics of lubricin's presence or absence."

... more about:
»cartilage »lubricin »measurement »role

Team member Jeffrey Coles, a Ph.D. student working in Zauscher's laboratory, presented the findings on Monday, Feb. 12, at the annual meeting of the Orthopaedic Research Society, in San Diego. The work was supported by the National Institutes of Health.

While lubricin had been suspected to play a role in reducing joint friction, earlier studies had focused on another constituent of joint fluid called hyaluronic acid. Injections of this material are frequently used as a treatment for osteoarthritis, the most common form of arthritis. However, the treatment seems to work primarily as an anti-inflammatory agent, Zauscher noted, doing little to prevent further joint damage.

Last year, Zauscher's group reported evidence that lubricin acts as a repellant boundary layer between joint surfaces, reducing friction by preventing contacts altogether rather than simply "greasing the wheels" http://www.pratt.duke.edu/news/index.php?story=260.

Those results stemmed from the first examination of the changing molecular forces between a model joint and glass slide as the amount of lubricin in the solution between them increased.

Now, the researchers have applied a similar technique to the molecular-level study of mouse joints, comparing normal mice to those lacking the gene for lubricin. They used an atomic force microscope (AFM) to examine the cartilage found on the surface of the ball at the top of the thigh bone that fits into the hip socket of the mice.

AFM microscopes have a sharp tip that scans the surfaces of structures at the level of individual atoms and measures the force of molecular-level interactions. In this case, the team chemically modified the tip to imitate the chemical properties of joint cartilage.

The researchers used the modified tips to probe the surface of normal and lubricin-deficient joints, gaining measurements of the amount of friction between the two surfaces. They also obtained measurements of the roughness and stiffness of the cartilage surface.

When compared with mice that have normal joint cartilage, mice lacking lubricin showed two to three times the amount of friction and their joint surfaces were more than twice as rough. The stiffness of the joint cartilage in mutant mice also was reduced by a factor of five, the researchers found. They noted that these findings are consistent with the significant tissue degeneration in early osteoarthritis.

"It's clear from our findings that lubricin is important for protecting the structural integrity of joints," Coles said.

The researchers next will examine the effects of replacing lubricin on the joint surfaces of mutant mice. They are seeking a better understanding of how lubricin carries out its role as a boundary lubricant, leading perhaps to an improved treatment option for osteoarthritis. Preliminary evidence suggests that lubricin injections may prevent, or at least slow, further deterioration of joint cartilage in the arthritic mice.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: cartilage lubricin measurement role

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>