Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simple 2-gene test sorts out similar gastrointestinal cancers

13.02.2007
Top scoring pair analysis applicable to other cancers, personalized care

A powerful two-gene test distinguishes between a pair of nearly identical gastrointestinal cancers that require radically different courses of treatment, researchers report this week in the online Early Edition of the Proceedings of the National Academy of Sciences.

"This simple and accurate test has the potential to be relatively quickly implemented in the clinic to benefit patients by guiding appropriate treatment," says senior author Wei Zhang, Ph.D., professor in the Department of Pathology at The University of Texas M. D. Anderson Cancer Center.

The analytical technique employed to tell gastrointestinal stromal tumor (GIST) from leiomyosarcoma (LMS) with near perfect accuracy will have wider application in more individualized diagnosis and treatment of other types of cancer, study co-authors from M. D. Anderson and the Institute for Systems Biology in Seattle conclude.

... more about:
»GIST »Gastrointestinal »LMS »distinguish

GIST was once thought to be a type of leiomyosarcoma because both originate in the smooth muscle cells of the gastrointestinal tract. However, GIST is treatable with the targeted medication known as Gleevec and is relatively unresponsive to chemotherapy. The opposite is true of LMS.

An existing test distinguishes among the two cancers with about 87 percent accuracy, but intensive and time-consuming additional analyses are required for uncertain cases, Zhang says.

The researchers used common whole genome microarrays to measure gene expression in 68 GIST or LMS tumors, but then applied an analytical twist. Rather than identifying multiple genes that might distinguish each type of cancer, the researchers instead analyzed every possible pair of genes, says first author Nathan Price, Ph.D., research scientist at the Institute for Systems Biology, a process called Top Scoring Pair analysis.

The result was a cancer classifier based on the expression ratio of two genes. If the gene OBSCN expresses more of its RNA than the gene C9orf65, then the tumor is GIST. If C9orf65 is more abundant, it's LMS.

The test accurately identified 67 of the 68 microarrayed tumors, with the exception being one tumor with nearly a 50-50 split between the two expressed genes upon which no diagnosis could be made. An additional test using a more accurate measurement procedure on the two genes identified 20 of the original samples (including the sample with near equal gene expression) and 19 independent samples with 100 percent accuracy, the authors report.

Genomic approaches to diagnosing, selecting treatment and determining a cancer patient's prospects of responding to care are beginning to work their way into the clinic, the researchers note. These approaches can rely on dozens of genes as biomarkers.

Top scoring pair analysis allows the use of fewer genes to distinguish between similar cancers or between groups of patients who have one type of cancer yet respond differently based on genetic indicators, the authors note. For example, paired gene analysis may be used to determine which patients benefit from different types of chemotherapy and which patients are at risk of relapse.

Zhang said the research group is using this analytical strategy to identify gene pairs that can predict which GIST patients respond to Gleevec and how other types of cancer respond to treatment as well.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

Further reports about: GIST Gastrointestinal LMS distinguish

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>