Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleft palate in fetal mice prevented by treating

13.02.2007
Mice engineered to have cleft palates can be rescued in utero by injecting the mothers with a small molecule to correct the defect, say scientists at the Stanford University School of Medicine and Lucile Packard Children's Hospital.

In addition to shedding light on the biology of cleft palate, the research raises hopes that it may one day be possible to prevent many types of human birth defects by using a similar vaccination-type technique in pregnant women likely to have affected fetuses.

"This is a really important baby step that opens the door to the development of fetal therapies," said pediatric craniofacial surgeon Michael Longaker, MD. "Our hope and expectation is that patients at Packard Children's and other institutions will benefit as this basic advance is translated into something that will eventually make a significant difference for this and other birth defects."

Longaker is the senior author of the study, which will be published in the Feb. 11 advance online edition of Nature. The research is the first demonstration that a technique known as chemical genetics ­ in which small molecules are used to modify gene expression or protein activity ­ can reach a fetus when administered to a pregnant animal.

... more about:
»Fetus »Liu »Longaker »fetal »palate

"It's such a cool concept," said Longaker, professor of medicine and a leader in Stanford's Institute for Stem Cell Biology and Regenerative Medicine. "We injected a small molecule into mom, and it goes into the embryo and works. There are tremendous implications to the idea of preventing conditions in unborn patients rather than trying to treat them after birth." Cleft defects are the second-most common birth defect worldwide and affect about one in 2,000 births.

Longaker, who spent several years in fetal surgery working to design surgical approaches for life-threatening defects prior to coming to Stanford, said the concept of noninvasively preventing these defects by treating the mother is something that was unthinkable when he first began his work. "This is a great example of expectations changing as technology evolves," he said.

For this study, co-author and postdoctoral scholar Karen Liu, PhD, used a short amino-acid tag to disrupt the function of a protein called GSK-3 beta. GSK-3 beta function is important in a variety of biological processes, and mice with the tagged protein exhibited many problems in utero, including cleft palates and sternum defects. However, Liu was able to reverse the defects by injecting the pregnant mice with rapamycin­a small molecule that stabilized the tag and restored the protein's function.

In addition to revealing for the first time that GSK-3 beta is important in palate formation, Liu discovered that the technique could be used to identify the specific times during development that the protein's function is required. For example, maternal rapamycin treatment between embryonic days 13.5 and 15 corrected the palate defect, but normal sternal development required functional protein between days 15.5 and 17. It's likely that the same chemical genetic approach could be applied to a variety of proteins and developmental processes to create a series of molecular snapshots of embryogenesis.

"The beauty of the technique is that it nails down the developmental window for various embryonic events," said Longaker. "We don't need to treat the mother long term, but just during the time that the organ or structure is forming."

Although promising, direct human applications of the research will require several key advances: an ability to predict which women are likely to have fetuses with birth defects before the defects occur; knowledge of an effective, small-molecule based therapy that can prevent the defect; and an accurate method of tracking fetal development to allow time-appropriate administration of the therapy.

"Over time, I expect we will have the ability to overcome these obstacles," said Longaker. "This is the true value of having one of the best children's hospitals in the country integrated within a school of medicine renowned for its research capabilities. With interdisciplinary teamwork, we may be able to develop a whole new way to prevent birth defects."

Gerald Crabtree, MD, PhD, professor of pathology and developmental biology, collaborated with Longaker and Liu on the study. Liu is supported by an NIH training program in regenerative medicine that fosters the interdisciplinary collaboration that led to the breakthrough research. "We're putting people together in the sandbox who wouldn't normally be playing together," quipped Longaker about the collaboration.

Krista Conger | EurekAlert!
Further information:
http://www.stanford.edu

Further reports about: Fetus Liu Longaker fetal palate

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>