Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mechanism for nutrient uptake discovered

12.02.2007
Biologists at the Carnegie Institution's Department of Plant Biology have discovered a new way that plant cells govern nutrient regulation—neighboring pore-like structures at the cell's surface physically interact to control the uptake of a vital nutrient, nitrogen.

It is the first time scientists have found that the interaction of neighboring molecules is essential to this regulation. Since plants, animals, bacteria, and fungi all share similar genes for this activity, the scientists believe that the same feature could occur across species. The discovery, published in the February 11th on-line edition of Nature, has widespread potential—from understanding human diseases, such as kidney function, to engineering better crops.

"Every cell in every organism has a system for bringing in nutrition and expelling waste," explained lead author Dominique Loqué. "Some are through pore-like protein structures called transporters, which reside at the surface of the cell's outer membrane. Each pore is capable of transporting nutrients individually, so we were really surprised to find that the pores simply can't act without stimulation from their neighbors."

In earlier research the Carnegie scientists, with colleagues, identified the genes responsible for initiating nitrogen uptake in plants. That identification has helped other researchers find the relatives of these genes in a variety of species from bacteria to humans. In this study, the scientists wanted to identify how ammonium transport is regulated.

... more about:
»Ammonium »FOR »discovered »nitrogen »nutrient »uptake

Plants import nitrogen in the form of ammonium from the soil. The researchers found that the end portion, or so-called C-terminus, of the protein Arabidopsis ammonium transporter AtAMT1;1, located at the surface of the cell membrane, acts as a switch.

"The terminus is an arm-like feature that physically grabs a neighboring short-chain molecule, binds with it, and changes the shape of itself and its neighbor thereby activating all the pores in the complex," continued Loqué. "The pores can't function without this physical stimulation."

"The rapid chain-reaction among the different pores allows the system to shut down extremely fast and can even memorize previous exposures," noted co-author Wolf Frommer. "Imagine a large animal marking its territory. A sudden flow of ammonia could be toxic to the plant. If it weren't for a rapid-fire shutdown plants could die. The conservation of this feature in the related transporters in bacteria, fungi, plants, and animals suggests that an ancient organism, which was a precursor to all known organisms on Earth, had developed this feature because there was much more ammonia on the early Earth. The ubiquitous presence of this structure in all of the known ammonium transporters suggests that the regulation is still necessary today for all of these organisms—cyanobacteria in the ocean, fungi that grow on grapes and make our wine, plants that provide our food—and even in our kidneys, which excrete nitrogen. We also suspect other different types of transporters will be discovered to work in this way."

The scientists don't yet know what triggers the rapid shut-off. They think it might be a very common regulatory event called phosphorylation, where a phosphate molecule is introduced to another molecule, changing the latter, and preparing it for a chemical reaction. They have found a site for phosphorylation and are looking at this possibility further.

A leading expert in transporters, Professor Dale Sanders, head of the biology department at the University of York in the U.K. commenting on the work said: "Loqué, Frommer and co-workers have demonstrated very beautifully how plant ammonium transporters are controlled. A switch domain in the protein facilitates rapid and sensitive control of ammonium transport to preclude over-accumulation of an ion that is beneficial at low concentrations, but potentially toxic at high concentrations. This is a major advance in the field of plant mineral nutrition."

Wolf Frommer | EurekAlert!
Further information:
http://www.carnegieinstitution.org/

Further reports about: Ammonium FOR discovered nitrogen nutrient uptake

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>