Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shedding New Light on Proteorhodopsin

12.02.2007
New light has been shed on proteorhodopsin, the light-sensitive protein found in many marine bacteria. Researchers at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California at Berkeley have demonstrated that when the ability to respire oxygen is impaired, bacterium equipped with proteorhodopsin will switch to solar power to carry out vital life processes.

“Our research shows that proteorhodopsin contributes to a bacterial cell’s energy balance only under certain environmental conditions, namely when the cell’s ability to respire has been impaired,” said Jan Liphardt, a biophysicist who holds a joint appointment as a Divisional Fellow in Berkeley Lab's Physical Biosciences Division (PBD) and the Physics Department of UC Berkeley (UCB). “By harvesting light, proteorhodopsin enables bacterial cells to supplement respiration as a cellular energy source. This ability to withstand oxygen deprivation probably explains why so many ocean bacteria express proteorhodopsin.”

Liphardt said that the solar power option represents a potentially significant boost for efforts to develop alternatives to fossil fuel energy sources. Microbes that can simultaneously harvest energy from several different sources may be better at producing biofuels than microbes that can only utilize a single energy source.

The results of this study appear in a paper published by the Proceedings of the National Academy of Sciences (PNAS), entitled: Light-powering Escherichia coli with proteorhodopsin. Co-authoring the paper with Liphardt were UCB graduate students Jessica Walter and Derek Greenfield, and Carlos Bustamante, who also holds a joint Berkeley Lab-UCB appointment and is a Howard Hughes Medical Institute (HHMI) investigator.

There was a great deal of excitement in the biology community in 2000 when proteorhodopsin was first discovered encoded within the genomes of uncultivated marine bacteria. The discovery implied that such bacteria possessed phototrophic as well as respiratory capabilities. This would be a critical adaptation for seafaring microbes because the world’s oceans are permeated with “dead zones,” areas that lack sufficient oxygen to sustain life.

Subsequent studies established that proteorhodopsin is a light-driven proton pump, able to transport protons across cellular membranes in order to create stored electrochemical energy. In this respect, it is similar to another protein, bacteriorhodopsin, that’s used by bacteria in salt ponds to supplement respiration. However, in experiments in which marine bacteria endowed with proteorhodopsin were exposed to light, there was no response. This begged the question: What does proteorhodopsin actually do?

A recent study out of the University of Kalmar in Sweden, led by Jarone Pinhassi, showed that light could be used to stimulate the growth of some types of marine bacteria carrying proteorhodopsin. This indicated that such bacteria can use a form of photosynthesis to supplement respiration as an energy source, but the extent to which light could be used to replace respiration was still unknown.

“Our thinking was that if you had a system that could harvest energy from two different sources and you knocked out one of those sources then you would probably maximize the alternative energy source,” Liphardt said. “Think of it like a capacitor. If a capacitor is already fully charged and you connect a battery to it nothing happens. However, if you drain the capacitor and then connect a battery, a current will flow.”

To observe proteorhodopsin in action and measure its effects, Liphardt and his co-authors genetically engineered a strain of Escherichia coli that would express the light-sensitive protein.

Said Walter, “The energy metabolism of E. coli is well understood so it served as an excellent testbed for observing proteorhodopsin activity when the microbe’s ability to respire is suddenly impaired. We impaired respiration through either oxygen depletion or the respiratory poison azide.”

The Berkeley researchers monitored single cells of E. coli and observed the response to light of the proton motive force (pmf), the electrochemical potential of protons across cellular membranes that bacteria use as the energy source to, among other functions, power the rotary flagellar motor which enables them to swim.

“We found that if we shined light on our E. coli cells when their respiration was impaired, they would swim or stop depending on the light’s color,” said Walter. “Proteorhodopsin has an absorption spectrum that peaks in the green wavelengths, so the cells swam when they were exposed to green light, but stopped when they were exposed to red light.”

In the absence of the azide respiratory poison, green light had no effect on the flagellar motors of these proteorhodopsin-equipped E. coli. By measuring the pmf of individual illuminated cells under different concentrations of azide or various degrees of lighting, the Berkeley researchers were able to quantify the coupling between light-driven and respiratory proton currents. At the highest azide concentrations, the average cell velocity increased 70-percent upon green light illumination. In the control study, normal E. coli cells, which do not not express proteorhodopsin, had no response to the green light.

The next step in this work, Liphardt said, is to optimize the amount of light that can be collected in cells enhanced with proteorhodopsin. For this the researchers will need to identify the most efficient forms of the protein, then manipulate microbial genomes through the addition or deletion of key genes.

This work was supported by the U.S. Department of Energy’s Office of Science, Energy Biosciences Program, the University of California, Berkeley, the Hellman Faculty Fund, the Sloan and Searle foundations, and the National Science Foundation for Graduate Research Support.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Lynn Yarris | EurekAlert!
Further information:
http:// www.lbl.gov
http://www.lbl.gov/Science-Articles/Archive/PBD-proteorhodopsin.html

Further reports about: Azide Coli E. coli Liphardt Respiratory energy source proteorhodopsin respiration

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>