Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cold Spring Harbor Laboratory scientists discover new gene that prevents multiple types of cancer

12.02.2007
Cell publishes study titled 'CHD5 is a tumor suppressor at human 1p36'

A decades-old cancer mystery has been solved by researchers at Cold Spring Harbor Laboratory (CSHL). "We not only found a critical tumor suppressor gene, but have revealed a master switch for a tumor suppressive network that means more targeted and effective cancer therapy in the future," said CSHL Associate Professor Alea Mills, Ph.D. The study, headed by Mills, was published in the February issue of Cell.

Specifically, Mills' discovery identifies CHD5, a protein that prevents cancer, as a novel tumor suppressor, mapping to a specific portion of chromosome 1 known as 1p36. When CHD5 is not doing its job, the machinery within our cells that normally prevents cancer is switched off. The ability of CHD5 to function as a master switch for a tumor suppressive network suggests that this gene is responsible for a large number of diverse forms of human cancers. "CHD5 functions like a circuit breaker that regulates the tumor-preventing power in our cells—when it blows, cancer occurs," explains Mills. Modulation of CHD5 activity may provide novel strategies for better design of more effective cancer therapies. This gene has remained a mystery until the discovery by Mills' team.

After they located the region where the tumor suppressor resided, the Mills team sought to identify which genes in that area were responsible for tumor suppression. Their results showed that reducing expression of a single gene--CHD5--made cells that had been rendered slow growing by adding an extra copy of the region, grow like normal cells.

... more about:
»CHD5 »Cancer »Mills »suppressor »tumor suppressor

The findings of Mills' study will influence the future of cancer research. It shows that deletion of a part of 1p36 causes cancer and increased "dosage" of CHD5 triggers extra tumor suppression. One extra dose, or copy, caused cells to either stop dividing or to undergo cell suicide by switching on a battery of potent tumor protective machinery. This work indicates that pharmaceuticals that switch on CHD5 may provide a way to treat many types of human cancer.

The research team worked with mouse models which enabled them to investigate the gains and losses of the chromosome segment corresponding to human 1p36. To extend the research to human cancer, Mills collaborated with Stanford University researchers Dr. Hannes Vogel and Dr. Markus Bredel to study whether CHD5 also functioned as a tumor suppressor in humans. They discovered that glioma, a specific form of brain tumor, frequently had deletion of CHD5, demonstrating the important role of CHD5 in human cancer.

This research and discovery was funded largely by private sector donations which are important to support state-of-the-art research and discoveries that may not traditionally be funded by the government. "The advance by Dr. Mills and her team shows that CSHL's strategy of providing financial resources to outstanding young scientists pays off towards diagnosing and treating disease and human suffering," states CSHL President Bruce Stillman.

Alyssa Nightingale | EurekAlert!
Further information:
http://www.cshl.edu

Further reports about: CHD5 Cancer Mills suppressor tumor suppressor

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>