Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify 'Missing Link' in Process Leading to Alzheimer's Disease

09.02.2007
Scientists at the University of Virginia have identified what appears to be a major missing link in the process that destroys nerve cells in Alzheimer’s disease, an incurable disease that slowly destroys memory and cognitive abilities.

The findings are reported in the Nov. 20, 2006, issue of the Journal of Cell Biology and could eventually lead to new drugs that target and disrupt specific proteins that conspire in the brain to cause Alzheimer’s.

In Alzheimer’s disease, two kinds of abnormal structures accumulate in the brain: amyloid plaques and neurofibrillary tangles. The plaques contain fibrils that are made from protein fragments called “beta-amyloid peptides.” The tangles also are fibrous, but they are made from a different substance, a protein called “tau.” In the new U.Va. study, the researchers found a deadly connection between beta-amyloid and tau, one that occurs before they form plaques and tangles, respectively.

According to George Bloom, the senior author of the study and a professor of biology and cell biology at U.Va., this connection causes the swiftest, most sensitive and most dramatic toxic effect of beta-amyloid found so far. What makes it most remarkable, though, is that it requires a form of amyloid that represents the building blocks of plaques, so called “pre-fibrillar beta-amyloid,” and it only happens in cells that contain tau. Even though they account for just ~10 percent of the cells in the brain, nerve cells are the major source of tau, which likely explains why they are specifically attacked in Alzheimer’s disease.

... more about:
»Alzheimer »Beta-Amyloid »Nerve »Plaques »Synapse »Tau
The researchers used cultured mammalian cells that either did or did not make tau to study how cells respond to beta-amyloid. They found that pre-fibrillar, but not fibrillar beta-amyloid works together with tau to break apart microtubules — highways along which “synapse” replacement parts move rapidly in the nerve cell from where they are made to where they are needed. Synapses are connections between nerve cells, and in the brain they are the structural basis of memory and cognition. When nerve cells in the brain lose their microtubules they also lose the ability to replace worn out synapse parts, and synapses therefore disappear. The loss of synapses, and consequent loss of memories and cognitive skills, cannot be reversed, and can lead directly to nerve cell death.

“We think we’ve found one of the seminal cell biological events in the pathogenesis of Alzheimer’s and if we can figure out all of the steps in the process and understand each player at every step, it will represent many potential new drug targets for Alzheimer’s therapy,” Bloom said. “Our paper defines one of the earliest events that causes neurons to die in both early-onset familial Alzheimer’s and late-onset Alzheimer’s disease. We believe this is the first evidence for the long elusive ‘missing link’ between amyloid and tau in Alzheimer’s disease.”

“This is a very significant finding that greatly improves our understanding of the mechanisms within the cell that ultimately lead to Alzheimer’s disease,” said Lester Binder, professor of cell and molecular biology at Northwestern University and a leading researcher on Alzheimer’s. Binder said he has already incorporated the U.Va. study into classes he teaches on the pathogenesis of Alzheimer’s disease and dementia.

The study’s first author and lead investigator is Michelle King, a U.Va. research assistant professor of biology. Other investigators include Bloom, Ho-Man Kan and Alev Erisir of U.Va., Peter W. Baas of Drexel University and Charles G. Glabe of the University of California at Irvine.

George Bloom | EurekAlert!
Further information:
http://www.virginia.edu

Further reports about: Alzheimer Beta-Amyloid Nerve Plaques Synapse Tau

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>