Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify 'Missing Link' in Process Leading to Alzheimer's Disease

09.02.2007
Scientists at the University of Virginia have identified what appears to be a major missing link in the process that destroys nerve cells in Alzheimer’s disease, an incurable disease that slowly destroys memory and cognitive abilities.

The findings are reported in the Nov. 20, 2006, issue of the Journal of Cell Biology and could eventually lead to new drugs that target and disrupt specific proteins that conspire in the brain to cause Alzheimer’s.

In Alzheimer’s disease, two kinds of abnormal structures accumulate in the brain: amyloid plaques and neurofibrillary tangles. The plaques contain fibrils that are made from protein fragments called “beta-amyloid peptides.” The tangles also are fibrous, but they are made from a different substance, a protein called “tau.” In the new U.Va. study, the researchers found a deadly connection between beta-amyloid and tau, one that occurs before they form plaques and tangles, respectively.

According to George Bloom, the senior author of the study and a professor of biology and cell biology at U.Va., this connection causes the swiftest, most sensitive and most dramatic toxic effect of beta-amyloid found so far. What makes it most remarkable, though, is that it requires a form of amyloid that represents the building blocks of plaques, so called “pre-fibrillar beta-amyloid,” and it only happens in cells that contain tau. Even though they account for just ~10 percent of the cells in the brain, nerve cells are the major source of tau, which likely explains why they are specifically attacked in Alzheimer’s disease.

... more about:
»Alzheimer »Beta-Amyloid »Nerve »Plaques »Synapse »Tau
The researchers used cultured mammalian cells that either did or did not make tau to study how cells respond to beta-amyloid. They found that pre-fibrillar, but not fibrillar beta-amyloid works together with tau to break apart microtubules — highways along which “synapse” replacement parts move rapidly in the nerve cell from where they are made to where they are needed. Synapses are connections between nerve cells, and in the brain they are the structural basis of memory and cognition. When nerve cells in the brain lose their microtubules they also lose the ability to replace worn out synapse parts, and synapses therefore disappear. The loss of synapses, and consequent loss of memories and cognitive skills, cannot be reversed, and can lead directly to nerve cell death.

“We think we’ve found one of the seminal cell biological events in the pathogenesis of Alzheimer’s and if we can figure out all of the steps in the process and understand each player at every step, it will represent many potential new drug targets for Alzheimer’s therapy,” Bloom said. “Our paper defines one of the earliest events that causes neurons to die in both early-onset familial Alzheimer’s and late-onset Alzheimer’s disease. We believe this is the first evidence for the long elusive ‘missing link’ between amyloid and tau in Alzheimer’s disease.”

“This is a very significant finding that greatly improves our understanding of the mechanisms within the cell that ultimately lead to Alzheimer’s disease,” said Lester Binder, professor of cell and molecular biology at Northwestern University and a leading researcher on Alzheimer’s. Binder said he has already incorporated the U.Va. study into classes he teaches on the pathogenesis of Alzheimer’s disease and dementia.

The study’s first author and lead investigator is Michelle King, a U.Va. research assistant professor of biology. Other investigators include Bloom, Ho-Man Kan and Alev Erisir of U.Va., Peter W. Baas of Drexel University and Charles G. Glabe of the University of California at Irvine.

George Bloom | EurekAlert!
Further information:
http://www.virginia.edu

Further reports about: Alzheimer Beta-Amyloid Nerve Plaques Synapse Tau

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>