Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The end of an era for DNA patenting, says report

09.02.2007
Human DNA patents are unlikely to be the barrier to medical and scientific innovation that they were first feared to be, according to new findings published this week.

In fact in recent years new guidelines at patent offices, legal developments, commercial sentiment and the growing volume of genetic information in the public domain have together raised the bar on patentability of genes and other genetic material.

In particular, rigorous examination and prohibitive costs are discouraging speculative patent applications in Europe.

The findings are the result of 18 months of research funded by the European Community and carried out by Dr Michael M Hopkins, Dr Surya Mahdi, Mr Pari Patel and Professor Sandy M Thomas at SPRU - Science and Technology Policy Research, at the University of Sussex, UK.

... more about:
»DNA »DNA sequence »invention

The race to patent human DNA began in the 1980s, when scientists in industry and academia started unraveling the human genetic code, culminating in the publication of a full draft of the human genome in 2001. As the human genome project published its results, so biotech businesses, pharmaceutical companies, and universities rushed to file patent applications to protect their stake in a fast-developing field. This stoked fears that DNA sequences important for research into the causes of disease such as cancer or diabetes would no longer be available for study, or that resulting drugs and diagnostics might only be available at excessive prices.

The authors identified 15,600 cases of inventions where patents had been filed claiming human DNA sequences (tiny strands of genetic material) at the world's leading Patent Offices in the USA, Europe and Japan.

They then interviewed patent holders - including some of the world's leading pharmaceutical companies - to find out what they intended to do with their patents. Their findings include:

•To date, just one third of these inventions have actually been granted patents by one of the three patent offices studied - others were refused, have still to be processed or have been withdrawn by the applicant because the invention was considered to be no longer technically or commercially viable.

•The US patent office has granted far more of these patents, which has led to concerns in the USA about access to research and diagnostics, particularly for some cancers. By contrast the patent offices in Japan and Europe have only granted between 3% and 5% of patent applications. Furthermore researchers in Europe benefit from laws which allow the use of this knowledge for non commercial research without patent infringement.

•Patent examiners are more stringent, particularly in Europe and Japan, in rejecting applications that aren't supported by sufficient biological evidence.

•Commercial interest in DNA patent applications remains, but increasingly the DNA is just a part of a more complex invention. Overall, such filings are likely to be made in much lower numbers than seen in the past.

Professor Thomas says: "A combination of policy change and developments in the commercial and scientific environment means that obtaining patents on DNA sequences has become generally more difficult and in some cases less commercially attractive. We believe these changes are in the interests of academic and commercial researchers, as well as patients.”

Dr Hopkins says: “Patents are still necessary, however, as medical research is expensive and society needs to reward and encourage ingenuity. Developing a drug, for example, costs several hundred million dollars. Patent offices have focused increasingly on giving due rewards while rejecting overly broad or frivolous applications."

Maggie Clune | alfa
Further information:
http://www.sussex.ac.uk/press_office/media/media597.shtml

Further reports about: DNA DNA sequence invention

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>