Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detection of Salmonella in 24 hours

09.02.2007
The food and drink we consume have to pass strict quality controls. Nevertheless, these measures are not always sufficient, given that sometimes certain foodstuffs can still give rise to food poisoning, most often caused by micro-organisms.

The Salmonella bacterium is undoubtedly one of the best known of these. At the University of the Basque Country (UPV/EHU) they are developing a new, rapid-detection system (within 24 hours) for Salmonella.

It is currently a laborious process to detect Salmonella in food. An analytical study is carried out in the laboratory by means of conventional microbiological techniques and the results take a week, a delay which creates problems for the food industry

In 2002 the Department of Immunology, Microbiology and Parasitology at the UPV/EHU together with the company, Laboratorios Bromatológicos Araba, and the Leioa Technological Centre, decided to carry out collaborative work in order to try to develop new, faster methods for Salmonella detection.

... more about:
»DNA »RNA »Salmonelle »UPV/EHU »enable

Genetic methods

A requisite for such genetic methods is to know the genome of this bacterium well. Fortunately there are several strains of Salmonella which have been totally sequenced. It is also known that there are certain genes that are specific to Salmonella that are not found in any other bacteria nor, for that matter, in any other living being. Thus, if we detect these genes, it means the presence of Salmonella. Although we may not detect the entire micro-organism, we can find the DNA of this bacteria.

The study of this DNA has given rise to technical developments which enable the detection of the presence or absence of Salmonella within 24 hours in food. Nevertheless, these methods based on the detection of DNA have a drawback. DNA is a very stable molecule that enables its study in persons who have died many years before. The same can happen in bacteria, i.e. it may be that we are identifying the DNA but that the bacteria have been destroyed by pasteurisation or sterilisation. The researchers have shown that the detection of the DNA in itself is not sufficient to identify the Salmonella given that, using this technique, it is not possible to know if the bacterium is dead or alive.

So the UPV/EHU found another, more specific marker for the viability of the bacteria – messenger RNA; an unstable and easily degradable molecule which is only produced when the bacteria is in the multiplication phase (and thus capable of producing infection), and is subsequently destroyed. Armed with this knowledge, the UPV/EHU research team designed a procedure to extract this RNA from foodstuffs, with subsequent transformation of this RNA into DNA and the detection of the latter.

Working with RNA means working with great precision and speed, because it can give us false negative results, i.e. indicate that there is no salmonella when, in fact, there is, the molecule having degraded. The extraction procedure is a fundamental one: once the messenger RNA is extracted, it is transformed into DNA by means of inverse transcription; a process whereby a DNA copy is synthesised. This DNA copy is detected by certain probes previously developed by the research team. In fact, the probes are DNA chains that are complementary to Salmonella genes marked with a fluorescent compound. If the DNA copy and the complementary DNA unite, the fluorescent compound emits a signal detectable in real time. This device, moreover, enables the quantification of the reaction, i.e. it tells us the number of Salmonella cells present in the food sample.

What the UPV/EHU researchers are proposing, in fact, is a combination of techniques: extraction on the one hand; the design of probes for and detection of DNA and RNA molecules on the other. They are techniques complementary to the traditional cell cultures and that enable the analysis of more samples in less time, thus enhancing food safety globally.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=1181&hizk=I

Further reports about: DNA RNA Salmonelle UPV/EHU enable

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>