Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Man-made Proteins Could Be More Useful than Real Ones

08.02.2007
Researchers have constructed a protein out of amino acids not found in natural proteins, discovering that they can form a complex, stable structure that closely resembles a natural protein. Their findings could help scientists design drugs that look and act like real proteins but won't be degraded by enzymes or targeted by the immune system, as natural proteins are.

The researchers, led by Howard Hughes Medical Institute (HHMI) professor Alanna Schepartz, report their findings in the February 14, 2007, issue of the Journal of the American Chemical Society, published in advance online on January 19, 2007. Schepartz and her coauthors, Douglas Daniels, James Petersson, and Jade Qiu, are all at Yale University. A story in the February 5, 2007, issue of Chemical & Engineering News spotlighted the research.

As an HHMI professor, Schepartz received a $1 million grant to find ways to infuse undergraduate teaching with the excitement of research. Several of her HHMI undergraduates synthesized beta-amino acid monomers that were used to prepare the synthetic protein.

Schepartz and colleagues built the short protein, or peptide, from â-amino acids, which, although they exist in cells, are never found in ribosomally produced proteins. â-amino acids differ from the alpha-amino acids that compose natural proteins by the addition of a single chemical component—a methylene group—into the peptide backbone.

“The fundamental insight from this study is that â-peptides can assemble into structures that generally resemble natural proteins in shape and stability,” Schepartz said. She added that their findings about the structure of the molecule that she and her colleagues synthesized will help scientists construct more elaborate â-peptide assemblies and ones that possess true biologic function.

Such â-peptides could also be designed as pharmaceuticals that would be more effective than natural protein drugs, because the enzymes that degrade natural proteins would not affect them.

To biochemists, a protein's chain-like amino acid sequence is considered its primary structure. Its secondary structure is produced when this chain folds, forming characteristic shapes such as helices. The three-dimensional arrangement of these shapes gives a protein what is known as its tertiary structure. Each of these levels of organization is crucial to determining a protein's function.

In previous studies, researchers had shown that â-peptides could fold from their chain-like primary structure into more complex secondary structures. But these synthetic â-peptides adopted very little or poorly defined tertiary structure, and no one had yet shown that a â-peptide could self-assemble into the kinds of stable bundles of spiral-shaped helices that are characteristic of natural proteins, Schepartz said.

In their studies, Schepartz and colleagues synthesized a â-peptide they called Zwit1-F. They allowed the chain of â-amino acids to assemble into its own structure and then analyzed it with x-ray crystallography, a technique in which x-rays are directed through a crystal of a protein so that its structure can be deduced from the resulting diffraction pattern.

The researchers found that the Zwit1-F peptide folded into a bundle of coiled helices that resembled those in natural proteins. In particular, Schepartz noted that both natural proteins and the â-peptide bundle folded in ways that placed the “water-hating” hydrophobic segments of the molecule in the core of the structure. Other features, too, were remarkably similar to a coiled helix bundle formed of á-amino acids.

“What is interesting about the â-peptide bundle is its similarity to á-helical bundles when viewed from afar,” she said. “It has a massive hydrophobic core, parallel and antiparallel helices, and an array of polar side chains on the surface. Looking from a distance, you'd say this was a helical bundle protein.”

There were significant differences, however. “Only when you look at the details, does it become clear that there are differences between the â-peptide structure and natural helical bundle proteins,” Schepartz said. For example, when helices of natural peptides nestle against one another, often their “side chains” extend from the sides of each helix, fitting together like ridges in grooves. The â-peptide helices, however, are structured so that their side chains alternate like interlocking fingers.

Schepartz said that the discovery of the tertiary helical bundle structure of Zwit1-F offers a “structural blueprint” for the design of more complex â-peptides that would function like natural proteins. Natural proteins, for example, operate as enzymes that catalytically guide chemical reactions in the cell.

Schepartz and colleagues now want to try to bind metal ions to the Zwit1-F structure. Metal ion binding would enable the researchers to begin designing enzymes based on the â-peptide, she explained. “We're also interested in generating versions that can assemble in membranes, as a first step toward making transmembrane proteins composed of â-amino acids,” she said.

One of the most exciting potential results of their finding could be design of â-peptide drugs. “There is growing interest in proteins as drugs,” said Schepartz. “And although certain proteins are very effective pharmaceuticals, protein drugs generally suffer from storage and stability problems outside the body and from degradation inside the body. â-peptides may be more stable than traditional protein drugs and would not be recognized by the proteases that destroy proteins in the cell.”

Schepartz said their discovery that the â-peptide Zwit1-F structurally resembles natural peptides raises a thorny biological question: Why don't â-peptide proteins exist in nature? "Certain â-amino acids are naturally synthesized in cells, and they are even loaded onto transfer RNA molecules that carry the amino acid components to the protein-making machinery of the cell, the ribosome," she noted. “But to my knowledge, there are no ribosomally constructed proteins that contain â-amino acids,” she said.

“The most provocative finding of this paper is that â-amino acids were not avoided as the building blocks of proteins because they cannot assemble into complex structures,” she said. “We've shown that clearly they can."

Jack Szostak, an HHMI investigator at Harvard Medical School who studies the origin of function of nucleic acid and peptide molecules, commented: "This paper shows that protein-like folded structures can be formed by molecules that are protein-like but have chemically distinct backbones. This is conceptually similar to recent demonstrations by Eschenmoser, Herdewijn, Benner, etc., that many nucleic acids that are chemically distinct from RNA and DNA can still form base-paired duplexes. In both cases, the implication is that biology uses its standard macromolecules not because they are uniquely suited to their tasks, but at least in part because of other considerations, such as ease of synthesis, or possibly historical accident."

Jennifer Donovan | EurekAlert!
Further information:
http://www.hhmi.org

Further reports about: HHMI Ion Peptide Schepartz Zwit1-F natural protein synthesized

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>