Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown Cancer Biologists Identify Major Player in Cell Growth

08.02.2007
The transcription factor GABP – a member of a family of crucial gene-regulating proteins – is required to jump-start the process of cell division, according to research from The Warren Alpert Medical School of Brown University and Rhode Island Hospital. The work, published in Nature Cell Biology, uncovers a new way to control cell growth and points up potential targets for cancer treatments.

When cells go about the business of dividing, they can get sidelined. Maybe there aren’t enough nutrients. Maybe there aren’t the right signals to resume multiplying. Either way, cells go quiet.

What can restart cell division – the process that drives the development of embryos, the renewal of hair, skin and blood, and the creation of cancer – is a single transcription factor called GABP, according to new research from The Warren Alpert Medical School of Brown University and Rhode Island Hospital.

The work, published online in Nature Cell Biology, introduces a new pathway that can be manipulated to control cell growth. Since cell growth is a fundamental biological process, the research may shed light on everything from miscarriages to muscular dystrophy. The main application, however, is cancer. Since a key characteristic of cancer cells is unchecked growth, the research identifies potential targets for new treatments.

... more about:
»GABP »Rosmarin »cell division »transcription

“As a scientist and a physician, I am tremendously excited,” said Alan Rosmarin, M.D., an associate professor in the Department of Medicine and the Department of Molecular Biology, Cell Biology and Biochemistry at Brown and director of clinical oncology research for Lifespan, Rhode Island’s largest health care system. “This discovery not only adds to our basic understanding of cell division, it could lead to better cancer drugs. And they’re needed. Cancer touches everyone.”

During the cell cycle, the four-phase process of cell division, there is a period when the biochemical brakes are put on and cells become inactive. Then the process is kick-started and cells move into the so-called S phase, when DNA is duplicated. This is a critical juncture. If genes are missing or broken, these alterations are passed on to the new cell – and could result in disability or in diseases such as cancer.

So biologists are keenly interested in identifying the accelerators that rev-up cell division. Ets transcription factors, a family of gene-regulating proteins that are major players in embryonic and cancer development, seemed obvious culprits. Rosmarin, a hematologist-oncologist, studies one member of the Ets family called GABP. This transcription factor helps make a variety of cells, including white blood cells. If those cells develop abnormally, leukemia results.

But the exact function of GABP in the cell cycle wasn’t known. Rosmarin wanted to find out. So he and members of his laboratory created mice that carried a mutation – tiny DNA sequences were inserted into their GABP-making gene. These DNA bits would serve as a time bomb of sorts, deleting a critical piece of the gene when given a chemical signal.

From these mice, Rosmarin and his team grew fibroblasts – common connective tissue cells – in a Petri dish with nutrient-rich serum and watched them grow. When they detonated their time bomb, GABP was disrupted, and the fibroblasts’ ability to divide was dramatically reduced. At the same time, other genes known to restart cell division were unchanged.

The team confirmed GABP’s critical role in cell growth another way. Simply forcing dormant cells to make GABP, they found, was enough to rouse cells from their slumber and get them to grow again.

“So we’ve found a new pathway to control cell growth,” Rosmarin said. “Now that we know a way to disrupt GABP and stop division, there is the possibility that a drug can be made to do the same thing in cancer cells.”

Zhong-Fa Yang, an instructor in medicine at Brown and a postdoctoral research fellow at Rhode Island Hospital, was the lead author of the journal article. Stephanie Mott, a Rhode Island Hospital research associate, assisted with the experiments.

The National Heart, Lung and Blood Institute, the National Center for Research Resources and the Herbert W. Saint ’49 Fund at Brown University funded the work.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews and maintains an ISDN line for radio interviews. For more information, call the Office of Media Relations at (401) 863-2476.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

Further reports about: GABP Rosmarin cell division transcription

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>