Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown Cancer Biologists Identify Major Player in Cell Growth

08.02.2007
The transcription factor GABP – a member of a family of crucial gene-regulating proteins – is required to jump-start the process of cell division, according to research from The Warren Alpert Medical School of Brown University and Rhode Island Hospital. The work, published in Nature Cell Biology, uncovers a new way to control cell growth and points up potential targets for cancer treatments.

When cells go about the business of dividing, they can get sidelined. Maybe there aren’t enough nutrients. Maybe there aren’t the right signals to resume multiplying. Either way, cells go quiet.

What can restart cell division – the process that drives the development of embryos, the renewal of hair, skin and blood, and the creation of cancer – is a single transcription factor called GABP, according to new research from The Warren Alpert Medical School of Brown University and Rhode Island Hospital.

The work, published online in Nature Cell Biology, introduces a new pathway that can be manipulated to control cell growth. Since cell growth is a fundamental biological process, the research may shed light on everything from miscarriages to muscular dystrophy. The main application, however, is cancer. Since a key characteristic of cancer cells is unchecked growth, the research identifies potential targets for new treatments.

... more about:
»GABP »Rosmarin »cell division »transcription

“As a scientist and a physician, I am tremendously excited,” said Alan Rosmarin, M.D., an associate professor in the Department of Medicine and the Department of Molecular Biology, Cell Biology and Biochemistry at Brown and director of clinical oncology research for Lifespan, Rhode Island’s largest health care system. “This discovery not only adds to our basic understanding of cell division, it could lead to better cancer drugs. And they’re needed. Cancer touches everyone.”

During the cell cycle, the four-phase process of cell division, there is a period when the biochemical brakes are put on and cells become inactive. Then the process is kick-started and cells move into the so-called S phase, when DNA is duplicated. This is a critical juncture. If genes are missing or broken, these alterations are passed on to the new cell – and could result in disability or in diseases such as cancer.

So biologists are keenly interested in identifying the accelerators that rev-up cell division. Ets transcription factors, a family of gene-regulating proteins that are major players in embryonic and cancer development, seemed obvious culprits. Rosmarin, a hematologist-oncologist, studies one member of the Ets family called GABP. This transcription factor helps make a variety of cells, including white blood cells. If those cells develop abnormally, leukemia results.

But the exact function of GABP in the cell cycle wasn’t known. Rosmarin wanted to find out. So he and members of his laboratory created mice that carried a mutation – tiny DNA sequences were inserted into their GABP-making gene. These DNA bits would serve as a time bomb of sorts, deleting a critical piece of the gene when given a chemical signal.

From these mice, Rosmarin and his team grew fibroblasts – common connective tissue cells – in a Petri dish with nutrient-rich serum and watched them grow. When they detonated their time bomb, GABP was disrupted, and the fibroblasts’ ability to divide was dramatically reduced. At the same time, other genes known to restart cell division were unchanged.

The team confirmed GABP’s critical role in cell growth another way. Simply forcing dormant cells to make GABP, they found, was enough to rouse cells from their slumber and get them to grow again.

“So we’ve found a new pathway to control cell growth,” Rosmarin said. “Now that we know a way to disrupt GABP and stop division, there is the possibility that a drug can be made to do the same thing in cancer cells.”

Zhong-Fa Yang, an instructor in medicine at Brown and a postdoctoral research fellow at Rhode Island Hospital, was the lead author of the journal article. Stephanie Mott, a Rhode Island Hospital research associate, assisted with the experiments.

The National Heart, Lung and Blood Institute, the National Center for Research Resources and the Herbert W. Saint ’49 Fund at Brown University funded the work.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews and maintains an ISDN line for radio interviews. For more information, call the Office of Media Relations at (401) 863-2476.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

Further reports about: GABP Rosmarin cell division transcription

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>