Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interfering with vagal nerve activity in mice prevents diabetes and hypertension

08.02.2007
Interrupting nerve signals to the liver can prevent diabetes and hypertension in mice, according to scientists at Washington University School of Medicine in St. Louis. The finding is reported in the February issue of the journal Cell Metabolism.

The research team surgically removed the vagus nerve in mice and found the procedure prevented or reversed the development of insulin resistance and high blood pressure in mice primed to develop these disorders through treatment with glucocorticoids.

"So at least in mice, we've shown we can prevent the development of diabetes and hypertension by interrupting vagal nerve signaling," says senior investigator Clay F. Semenkovich, M.D., professor of medicine and of cell biology and physiology. "We don't know whether the same will hold true for humans, but we think somehow altering vagal nerve activity could provide a novel approach for treating these common metabolic disorders."

Previously, the research team had shown that a nuclear receptor called PPAR-alpha (Ppara) was necessary for the induction of both diabetes and hypertension when mice were treated with glucocorticoids, also known as steroids.

"Mice that can't make Ppara don't develop diabetes or hypertension in response to glucocorticoids," says Semenkovich, who also is chief of the Division of Endocrinology, Metabolism and Lipid Research. "The use of steroids is very common in medicine. People with asthma, arthritis, organ transplants and others rely on those steroid drugs, and many of them go on to develop insulin resistance that can advance to diabetes and hypertension."

But in these most recent experiments, the researchers showed that both Ppara and the vagus nerve seem to play important roles in the development of these disorders.

"If the vagus nerve has been surgically removed, the mice won't develop diabetes or hypertension in response to glucocorticoids, even if they have Ppara," says first author Carlos Bernal-Mizrachi, M.D., an assistant professor of medicine in the Division of Endocrinology, Metabolism and Lipid Research. "The process seems to be mediated by communication between the liver cells, the liver branch of the vagus nerve and its signals to the brain."

Actually, the vagus nerve communicates with just about everything. Its name is taken from the Latin word meaning "wanderer." Early neuroanatomists chose the name because it seemed whenever they looked at an organ in the body, they also found fibers from the vagus. It extends from the base of the brain, through the chest where it innervates part of the heart. It also sends nerve signals to other internal organs, including the liver, and eventually connects to the intestine. In these studies, however, the researchers were interested mainly in the connection between the vagus nerve coming from the liver and its communication with the brain.

When mice are treated with glucocorticoids, Ppara in the liver communicates with the vagus nerve, which signals the brain. Then the brain uses the vagal pathway to feed back instructions to the liver and kidneys. The brain instructs the liver to increase glucose production and the kidney to alter fluid metabolism, elevating blood pressure.

The same sort of process can occur in people who are obese. Semenkovich says a modest elevation of glucocorticoids is associated with obesity. Those elevated levels can initiate Ppara activity in the liver, which then will communicate with the vagus nerve to signal the brain and, in turn the brain will signal the liver and kidneys, contributing to diabetes and hypertension.

"We think obesity is probably initiating a similar process to the one we've interrupted in the mice," says Semenkovich. "An environmental influence — such as treatment with glucocorticoids or excess caloric intake that causes obesity — engenders a signal started by Ppara, which then is transmitted from the liver, along the vagus nerve."

That cascade of communication along the vagal nerve pathway has made the investigators think that they may be able to help people with diabetes and hypertension by interrupting normal vagal signaling. And there may be a ready-made population to study because many people already have surgically implanted devices that alter the signaling of the vagus nerve.

Some people with seizure disorders and treatment-resistant depression already have implanted electrodes that stimulate the vagus nerve to help alleviate their symptoms. Semenkovich believes the new mouse study suggests a similar approach might help people with insulin resistance or hypertension. They plan to follow patients who already have stimulators to see if signals from the stimulators affect susceptibility to diabetes, insulin resistance or hypertension.

"We used surgery to interrupt all signaling from the vagal nerve pathway," Bernal-Mizrachi says. "But it might actually be possible to change very specific signaling patterns to provide benefit to people who are at risk for hypertension or diabetes."

Some available drugs might be able to attack the problem in other ways. A class of medications called fibrate drugs can modulate the activity of Ppara. Those drugs are used to lower triglycerides and to elevate levels of HDL (good) cholesterol. Some studies have indicated the drugs provide a modest benefit, but other studies have suggested that such drugs might be harmful. So for now, the researchers are focusing more on the potential of the vagus nerve.

"I would argue that you can clearly produce a major impact by stimulating this nerve because it carries signals to so many organs," Semenkovich says. "We know the vagal pathway can influence seizures, depression and other disorders. This study suggests it affects diabetes and hypertension, too."

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: PPARã Semenkovich Vagus glucocorticoids hypertension insulin resistance vagal

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>