Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interfering with vagal nerve activity in mice prevents diabetes and hypertension

08.02.2007
Interrupting nerve signals to the liver can prevent diabetes and hypertension in mice, according to scientists at Washington University School of Medicine in St. Louis. The finding is reported in the February issue of the journal Cell Metabolism.

The research team surgically removed the vagus nerve in mice and found the procedure prevented or reversed the development of insulin resistance and high blood pressure in mice primed to develop these disorders through treatment with glucocorticoids.

"So at least in mice, we've shown we can prevent the development of diabetes and hypertension by interrupting vagal nerve signaling," says senior investigator Clay F. Semenkovich, M.D., professor of medicine and of cell biology and physiology. "We don't know whether the same will hold true for humans, but we think somehow altering vagal nerve activity could provide a novel approach for treating these common metabolic disorders."

Previously, the research team had shown that a nuclear receptor called PPAR-alpha (Ppara) was necessary for the induction of both diabetes and hypertension when mice were treated with glucocorticoids, also known as steroids.

"Mice that can't make Ppara don't develop diabetes or hypertension in response to glucocorticoids," says Semenkovich, who also is chief of the Division of Endocrinology, Metabolism and Lipid Research. "The use of steroids is very common in medicine. People with asthma, arthritis, organ transplants and others rely on those steroid drugs, and many of them go on to develop insulin resistance that can advance to diabetes and hypertension."

But in these most recent experiments, the researchers showed that both Ppara and the vagus nerve seem to play important roles in the development of these disorders.

"If the vagus nerve has been surgically removed, the mice won't develop diabetes or hypertension in response to glucocorticoids, even if they have Ppara," says first author Carlos Bernal-Mizrachi, M.D., an assistant professor of medicine in the Division of Endocrinology, Metabolism and Lipid Research. "The process seems to be mediated by communication between the liver cells, the liver branch of the vagus nerve and its signals to the brain."

Actually, the vagus nerve communicates with just about everything. Its name is taken from the Latin word meaning "wanderer." Early neuroanatomists chose the name because it seemed whenever they looked at an organ in the body, they also found fibers from the vagus. It extends from the base of the brain, through the chest where it innervates part of the heart. It also sends nerve signals to other internal organs, including the liver, and eventually connects to the intestine. In these studies, however, the researchers were interested mainly in the connection between the vagus nerve coming from the liver and its communication with the brain.

When mice are treated with glucocorticoids, Ppara in the liver communicates with the vagus nerve, which signals the brain. Then the brain uses the vagal pathway to feed back instructions to the liver and kidneys. The brain instructs the liver to increase glucose production and the kidney to alter fluid metabolism, elevating blood pressure.

The same sort of process can occur in people who are obese. Semenkovich says a modest elevation of glucocorticoids is associated with obesity. Those elevated levels can initiate Ppara activity in the liver, which then will communicate with the vagus nerve to signal the brain and, in turn the brain will signal the liver and kidneys, contributing to diabetes and hypertension.

"We think obesity is probably initiating a similar process to the one we've interrupted in the mice," says Semenkovich. "An environmental influence — such as treatment with glucocorticoids or excess caloric intake that causes obesity — engenders a signal started by Ppara, which then is transmitted from the liver, along the vagus nerve."

That cascade of communication along the vagal nerve pathway has made the investigators think that they may be able to help people with diabetes and hypertension by interrupting normal vagal signaling. And there may be a ready-made population to study because many people already have surgically implanted devices that alter the signaling of the vagus nerve.

Some people with seizure disorders and treatment-resistant depression already have implanted electrodes that stimulate the vagus nerve to help alleviate their symptoms. Semenkovich believes the new mouse study suggests a similar approach might help people with insulin resistance or hypertension. They plan to follow patients who already have stimulators to see if signals from the stimulators affect susceptibility to diabetes, insulin resistance or hypertension.

"We used surgery to interrupt all signaling from the vagal nerve pathway," Bernal-Mizrachi says. "But it might actually be possible to change very specific signaling patterns to provide benefit to people who are at risk for hypertension or diabetes."

Some available drugs might be able to attack the problem in other ways. A class of medications called fibrate drugs can modulate the activity of Ppara. Those drugs are used to lower triglycerides and to elevate levels of HDL (good) cholesterol. Some studies have indicated the drugs provide a modest benefit, but other studies have suggested that such drugs might be harmful. So for now, the researchers are focusing more on the potential of the vagus nerve.

"I would argue that you can clearly produce a major impact by stimulating this nerve because it carries signals to so many organs," Semenkovich says. "We know the vagal pathway can influence seizures, depression and other disorders. This study suggests it affects diabetes and hypertension, too."

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: PPARã Semenkovich Vagus glucocorticoids hypertension insulin resistance vagal

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>