Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


International multi-centre research group finds genetic defect contributing to cancer susceptibility

Gene elevating breast cancer risk also causes prostate cancer

An international multi-centre research effort has identified a new genetic defect as a potential heritable breast cancer susceptibility candidate. The same PALB2 mutation also seems to in some measure cause prostate cancer.

Cancer is a complex and common disease caused by a combination of both genetic and environmental factors. An inherited predisposition seems to be involved in at least 5–10 per cent of all cases of breast cancer. The two major familial breast cancer susceptibility genes BRCA1 and BRCA2 only explain 20-30 per cent of families with site-specific female breast cancer, which suggests the contribution of additional susceptibility genes. According to Dr Robert Winqvist, who coordinates the research effort, the identification of these genes may help to clarify the genetic background contributing to breast cancer and suggest novel pharmaceutical targets. It could also lead to genetic screening that identifies individuals at increased breast cancer risk and result in improved prevention efforts and treatment.

About a year ago, Dr Bing Xia and Professor David Livingston at the Dana-Farber Cancer Institute in Boston identified a novel BRCA2 binding factor, PALB2 that regulates certain key functions of normal BRCA2 activity. The next step was to set out to evaluate the newly detected PALB2 gene as a potential heritable breast cancer susceptibility candidate by screening for disease-related alterations. The results of this international research effort were recently published in Nature.

The research first involved comprehensive screening for genetic aberrations in 113 Finnish breast cancer families. The same constitutional mutation in PALB2 was observed in three families. It was later showed that the relevant mutant protein is deficient in its ability to support the kinds of DNA damage responses in which PALB2 normally participates. The mutation was further also investigated in 1,918 specimens from an unselected series of Finnish breast cancer individuals. This study revealed 18 mutation-positive individuals, about one per cent of the studied patients, most of whom turned out to have a familial pattern of disease development. The study also involved 141 unselected male breast cancer patients, 188 familial and 288 unselected colorectal cancers, as well as 164 familial and 475 unselected prostate cancer patients. In prostate cancer, one multigenerational cancer family was found where cancer occurred in several generations and all patients showed the single mutation in PALB2 that was studied. According to Winqvist, this suggests that this Finnish founder mutation may be important in heritable prostate cancer as well. Male breast cancer and colorectal cancer cases did not display the mutation.

The constitutional mutation elevates the risk of breast cancer four-fold

"Present results show that the discovered PALB2 mutation elevates the risk of breast cancer four-fold. However, we still need more research to better assess the effect on cancer development. As the comprehensive mutation analysis was originally conducted on only 113 cancer families, it may be that there still are other PALB2 genetic defects accounting for heritable breast and prostate cancer susceptibility. Recent results also imply that PALB2 might be a cancer susceptibility gene in other populations as well. It's been shown that two of the mutations identified in Fanconi anemia patients in non-Finnish populations seem to be associated with familial breast cancer," says Winqvist.

Winqvist points out that, in spite of recent advances, known factors can only explain a fraction of heritable susceptibility to breast cancer. He is nonetheless disposed to believe that the evaluation of yet other biologically significant factors will in time improve the situation. "Hopefully, increased knowledge of underlying mechanisms will provide better conditions for cancer prevention, diagnostics and treatment," Winqvist says.

The multi-centre research involved researchers from Oulu, Tampere, Kuopio and Helsinki Universities or university hospitals in Finland as well as from the US National Cancer Institute. The other research coordinator was Professor David Livingston from Boston. The discovery of the PALB2 genetic mutation was made by HanneleErkko, a PhD student in the Winqvist laboratory, who also carried out a number of the genetic analyses that followed. Dr Xia from the Livingston team was in charge of key analyses to prove the biological significance of the mutation.

The funding bodies behind the research include the Academy of Finland, the Foundation for the Finnish Cancer Institute, the Northern-Ostrobothnia Health Care District and the University of Oulu as well as by the US National Cancer Institute NCI.

The article was published in Nature on 8 February.
Nature online DOI: 10.1038/nature05609

Niko Rinta | alfa
Further information:

Further reports about: Cancer Mutation PALB2 Winqvist multi-centre prostate cancer susceptibility

More articles from Life Sciences:

nachricht Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.
24.10.2016 | Max-Planck-Institut für Hirnforschung

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>