Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Navigable Nanotransport

07.02.2007
Direct synthesis of hollow nanoscopic spheres with tailored surfaces

To accurately transport pharmaceutical agents to their specific target organs or cell types, you need a good carrier: nanoscopic capsules with surface elements that can “recognize” the target in question could do the trick.

To date, all methods for the production of such tiny capsules require preorganized structures or “molds” to shape hollow spheres and most methods require a lengthy, tedious synthetic or purification procedure. Korean researchers led by Kimoon Kim have now developed a very simple novel approach for the direct production of polymeric nanocapsules. As described in the journal Angewandte Chemie, this method is generally applicable to any monomers as long as they have a flat core and multiple polymerizable groups at the periphery.

Additionally, if building block are chosen that are able to bind specific (bio)molecules very tightly, the surface of the capsule can be easily decorated with species that are recognized by cells, showing the transporter the way to reach its goal, such as a tumor cell.

... more about:
»Molecules »Sphere »capsule »folic

To demonstrate the power of their new concept, Kim and his team chose rigid, disk-shaped monomers equipped with a ring of special molecular “hooks” that can be activated by UV light. When a solution containing these disks is irradiated, the hooks grab on to each other, linking the disks into little, two-dimensional “patches” that in turn hook on to other patches. Once they reach a certain size, the patches bend around and close off to form hollow spheres, which can then be filled with guest molecules. The size of the spheres is very uniform and depends largely on the solvent in which the linking reaction takes place. The researchers used this method to produce capsules with diameters ranging from 50 to 600 nm.

The little disks used in this process deserve special consideration: Kim and his colleagues chose to use curcurbiturils. These disk-shaped molecules have a cavity at their center. As their shape resembles a hollowed-out pumpkin, this class of compounds was named after the plant genus of pumpkins, the cucurbitaceae. When the mini-pumpkins are linked together, they form an empty sphere with many tiny cavities on its surface. These “pockets” can be filled with certain nitrogen-containing biomolecules, such as spermine, in a very stable fashion.

The Korean researchers coupled spermine to the vitamin folic acid and packed these hybrid molecules into the capsule’s pockets. This gave them capsules with a surface covered with folic acid molecules. What for? Many tumors have a significantly increased number of folic acid receptors on the surfaces of their cells. The folic acid on the capsules docks into these sites and is brought into the interior of the cell. Here, the contents of the capsule, such as an antitumor drug or contrast agent, can be released to selectively attack the tumor or to make an unambiguous diagnosis.

Kimoon Kim | EurekAlert!
Further information:
http://www3.interscience.wiley.com/cgi-bin/jabout/26737/press/200705press.html

Further reports about: Molecules Sphere capsule folic

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>