Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale chemists show that nature could have used different protein building blocks

07.02.2007
Chemists at Yale have done what Mother Nature chose not to — make a protein-like molecule out of non-natural building blocks, according to a report featured early online in the Journal of the American Chemical Society.

Nature uses alpha-amino acid building blocks to assemble the proteins that make life as we know it possible. Chemists at Yale now report evidence that nature could have used a different building block – beta-amino acids — and show that peptides assembled from beta-amino acids can fold into structures much like natural protein.

"The x-ray structure featured in the report shows a molecule that shares many of the structural characteristics of natural proteins," said principal author Alanna Schepartz, the Milton Harris '29 Ph.D. Professor of Chemistry at Yale and a Howard Hughes Medical Institute Professor. "Related studies show that the physical properties of the molecule are also remarkably similar to natural proteins. In other words, the beta-peptide assembly looks and acts a lot like a real protein."

The ability to mimic natural proteins makes beta-peptides powerful new tools for basic research and drug discovery. Like a taped recording, their greatest value may be in their difference from a live performance.

"Since beta-peptides are not processed in the cell like natural peptides or proteins, it may be possible in the future to design beta-peptides that perform better or in more locations than current protein drugs," said Schepartz. "They also may have unique properties as biomaterials."

Natural proteins are composed of linear chains of alpha-amino acids. Beta-peptides are composed of beta-amino acids, which have an extra carbon in their backbone. Like alpha-amino acids, beta-amino acids are generated under simulated pre-biotic conditions, are isolated from meteorites, and are byproducts of metabolism, but they are not genetically encoded like natural proteins, nor are they built into chains by cells.

Since the early 1990's, scientists have been able to assemble beta-peptides into isolated helices. Until now, however, creating a structure that mimics the larger size and complex folded architecture of a natural protein had been an elusive goal. Schepartz's team solved the dilemma by designing a molecule that could form a bundle using characteristics found in natural proteins — a greasy interior that repels water and a water-friendly exterior. This paper, which provides the first high-resolution picture of such a structure, shows a bundle of eight beta-peptides.

"The structure we see is intriguing, as it suggests that natural proteins could have been composed of beta-amino acids, but were not chosen to do so," said Schepartz.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu

Further reports about: amino acid beta-amino beta-peptide natural natural protein

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>