Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene found for rare disorder may reveal new pathway in mental retardation

07.02.2007
Studying mutations that give rise to a rare genetic disease, genetics researchers have identified a novel biological pathway that may have a broader role during human development, potentially in cases of mental retardation and autism.

An international team of researchers identified two genes that contribute to Cornelia deLange syndrome (CdLS), a multisystem genetic disease that affects an estimated one in 10,000 children. The disease varies from milder to more severe forms, but classically includes mental retardation, impaired growth, heart defects, feeding problems, deformed upper limbs and distinctive facial features.

In the current study, mutations in two genes of interest cause mental retardation, but with less pronounced facial features and none of the limb defects, such as missing hands or fingers, that are hallmarks of classical cases of CdLS. The genes play important roles in early development, and when mutated, cause brain abnormalities.

"Our work suggests that a subset of patients with mental retardation may have mutations in these genes, without showing the broader range of symptoms identified in diseases such as Cornelia deLange syndrome," said study leader Ian D. Krantz, M.D., a specialist in pediatric genetics at The Children's Hospital of Philadelphia. Dr. Krantz and his co-author, Laird S. Jackson, M.D., of Drexel University College of Medicine, led the study team that announced the discovery of NIPBL, the first gene known to cause CdLS, in 2004.

The current study appeared online Jan. 17 in the American Journal of Human Genetics, in advance of print publication in March 2007.

In contrast to the NIPBL gene, in which mutations cause roughly half of known CdLS cases, the researchers found that mutations in the new genes, SMC3 and SMC1A, cause only about 5 percent of CdLS cases. All three genes produce proteins called cohesin proteins. Cohesin proteins have long been known to play an important role in many species in controlling the integrity of chromosome pairs during cell division.

Recent research has unexpectedly showed that mutated genes along the cohesin pathway also cause specific abnormalities during human development. "In these cohesin complex proteins, the strongest effect seems to be in brain development," said Dr. Krantz.

Drs. Krantz and Jackson together maintain the world's largest database of patients with CdLS. The current study screened 115 patients who did not have mutations in the NIPBL gene, but who were judged to have CdLS or a milder variant of the disease, based on evaluations by clinical geneticists.

Of the 115 patients, 11 had mutations in the SMC1A or SMC3 gene. All had some degree of mental retardation, but none had limb abnormalities. Five of the 11 patients had normal height, whereas only 5 percent of patients with classic CdLS achieve normal height. The patients with the SMCIA and SMC3 mutations had milder versions of the distinctive facial features found in classical CdLS, such as thin eyebrows that join together, long eyelashes, thin lips and excessive body hair.

"In many of these patients, an experienced clinician might recognize their more subtle facial features as suggestive of CdLS, but for the most part, they would only come to clinical attention for having mild to moderate mental retardation," said Matthew A. Deardorff, M.D., the first author of the study and a fellow in genetics at Children's Hospital. "This study suggests there may be other, undiscovered mutations along the cohesin pathway among patients thought to have isolated mental retardation."

"This discovery will improve the diagnosis of Cornelia deLange syndrome," added Dr. Krantz, "and also opens an avenue for investigating genetic mechanisms in broader populations of patients with abnormal brain development, in mental retardation and possibly autism as well."

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

Further reports about: CdLS Krantz Mental cohesin mental retardation mutations retardation

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>