Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea creature's toxin could lead to promising cancer treatment

07.02.2007
A toxin derived from a reclusive sea creature resembling a translucent doughnut has inspired UT Southwestern Medical Center researchers to develop a related compound that shows promise as a cancer treatment.

In a study appearing online this week in the Proceedings of the National Academy of Sciences, the UT Southwestern scientists detail how the toxin blocks uninhibited reproduction of cultured human cancer cells while leaving healthy cells unaffected.

An accompanying study in PNAS shows that, in pre-clinical trials, a synthetic form of the toxin reduced human tumors implanted in mice without the harmful side effects seen using other cancer drugs. "Diazonamide is a special molecule – it's teaching us more than we imagined," said Dr. Patrick Harran, professor of biochemistry and a senior author on both studies.

"This is a truly exciting result," said Dr. John Schwab, a program officer at the National Insti tutes of Health's National Institute of General Medical Sciences, which partly funded the work. "Not only has this UT Southwestern team identified a potent anti-cancer drug, but its unique mode of action avoids the kinds of side effects that make cancer chemotherapy so difficult. It's a great example of how NIH support for fundamental chemical research can benefit the American health-care consumer."

The animal, Diazona angulata, is a sea squirt a few inches wide that lives in colonies anchored to rocks. It was discovered offshore of the Philippines in 1990 as scientists were looking for species that might lead to useful drugs. From a few specimens, scientists extracted a tiny amount of a toxin, diazonamide A, which the animal probably uses to repel predators.

The toxin proved to kill cancer cells in culture, but so little of its natural form was available that a race soon began to synthesize it in the laboratory.

A chemical structure for diazonamide A was published in 1991, but in 2001, Dr. Harran's group showed that initial report to be incorrect, and uncovered the correct structure. In the first of the two new studies, Dr. Harran and his co-workers synthesized several variants of diazonamide A in order to pin down how it prevents cancer cells from dividing.

Normal cell division involves a structure called the mitotic spindle, which pulls apart the chromosomes before the cell splits. The spindle is primarily made out of a substance called tubulin. Some anti-cancer drugs attack tubulin, but they have serious side effects, such as nerve damage and depletion of bone marrow and white blood cells.

The UT Southwestern researchers found that while diazonamide A blocked cell division, it seemed not to bind directly to tubulin. Instead, Dr. Xiaodong Wang, professor of biochemistry, and Dr. Gelin Wang, instructor of biochemistry, found that the toxin interacted with an enzyme called OAT, which was known to be involved in cellular metabolism but had no previously known role in cell division.

Interestingly, diazonamide did not block OAT's enzyme activity, the researchers said. Rather, it uncovered a second function for the protein in cell division.

"The finding that OAT is the cellular target of diazonamide is surprising for two reasons: First, there is no previous report that a mitochondrial enzyme like OAT can play a direct role in mitosis; second, OAT seems dispensable for normal cell division occurring in mice and men but is required for the division of cancer cells. This may explain the cancer specificity of diazonamide," said Dr. Wang, who is also a Howard Hughes Medical Institute investigator.

Dr. Noelle Williams, assistant professor of biochemistry and internal medicine, led the second phase of the research, which tested the effect of a variant of diazonamide A, called AB-5, in mice with tumors.

AB-5 has a structure nearly identical to diazonamide A and is indistinguishable in its biological action, but is easier to synthesize in the lab.

The researchers tested AB-5's effectiveness against cancer by implanting human tumor cells under the skin of m ice and treating them with either paclitaxel (Taxol) or vinblastine – both approved drugs currently used – or AB-5. The trial used tumor cells from human prostate, breast and colon cancers.

While all three drugs reduced tumors in the mice, the known drugs caused significant weight loss and loss of white blood cells while AB-5 caused neither side effect. "That the diazonamide toxin blocks mitosis selectively in cancer cells is almost too desirable an outcome to be true," said Dr. Steven McKnight, chairman of biochemistry and senior author of the second study. "As with any other unanticipated scientific discovery, the validity of these observations will be held to appropriately diligent scrutiny."

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: Biochemistry Cancer OAT Toxin diazonamide structure white blood cell

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>