Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sophisticated ESA space weather tool under development

06.02.2007
If a satellite encounters high-energy particles or other 'space weather' phenomena before ground controllers can take action, on-board electronics could be disrupted, scientific instruments damaged and, in very rare and extreme cases, spacecraft may even be lost. A sophisticated tool in development at ESOC promises to provide effective monitoring and forecasting for any type of mission.
But since early 2005, SEISOP (Space Environment Information System for Operations), a space-weather monitoring and forecasting tool under development at ESA's Space Operations Centre, has been successfully providing near-real-time space weather reports for Integral, ESA's gamma-ray space observatory.

Solar activity influences the entire solar system in several ways, including generating streams of fast-moving energetic particles and sudden bursts of damaging X-rays during solar flares.
Energetic cosmic rays from elsewhere in the galaxy also penetrate into our solar system. These phenomena are some of the major sources of abnormal behaviour and aging for spacecraft and their sensitive scientific instruments.

“SEISOP can potentially provide warning services to space agencies worldwide, since space weather can affect any spacecraft.”

Space Weather affects spacecraft in many ways

Developed in collaboration with the ESA Space Weather Applications Pilot Project with funding from the Portuguese Task Force at ESA, SEISOP comprises a database of spacecraft health records and worldwide space weather observations, combined with sophisticated software applications that provide reporting, warning, forecasting and history tracking for the Integral Flight Control Team.
"Space weather affects spacecraft in many ways. There can be random lost data, changes in orbit dynamics and reduced quality of science data. Therefore, real-time updates are essential when deciding how long to shut down instruments during hazardous periods," says Alessandro Donati, Head of ESOC's Advanced Mission Concepts and Technologies office.

ESA, NASA, NOAA, other sources feed data to SEISOP

Some of the space weather data is gathered by ESA, NASA and NOAA (US National Oceanic & Atmospheric Administration) spacecraft, while other observations come from numerous ground-based institutes and facilities. SEISOP is a member of SWENET, the Space Weather European Network.

SEISOP enables mission controllers to predict when they should shut down instruments such as star trackers, place systems into 'safe mode' or take other action to protect sensitive on-board electronics and scientific sensors.

While some instruments are equipped to automatically shut down during adverse periods, not all are and bringing an instrument back into service after an automated shut down is time consuming. Further, it has until now been difficult to know when radiation had fallen to safe levels, once an event like a solar flare had taken place.

SEISOP to enter operational development

In 2007, SEISOP will enter operational development aimed at providing all ESA missions with the same vital space weather updates. "We expect to start work this year to create the final operational version. SEISOP can potentially provide warning services not only within ESA but also to space agencies worldwide, since space weather can affect any spacecraft," says Donati.

Bernhard Von Weyhe | EurekAlert!
Further information:
http://www.esa.int/esaCP/SEMGSSSMTWE_index_0.html

Further reports about: ESA SEISOP SOLAR spacecraft

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>