Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sophisticated ESA space weather tool under development

06.02.2007
If a satellite encounters high-energy particles or other 'space weather' phenomena before ground controllers can take action, on-board electronics could be disrupted, scientific instruments damaged and, in very rare and extreme cases, spacecraft may even be lost. A sophisticated tool in development at ESOC promises to provide effective monitoring and forecasting for any type of mission.
But since early 2005, SEISOP (Space Environment Information System for Operations), a space-weather monitoring and forecasting tool under development at ESA's Space Operations Centre, has been successfully providing near-real-time space weather reports for Integral, ESA's gamma-ray space observatory.

Solar activity influences the entire solar system in several ways, including generating streams of fast-moving energetic particles and sudden bursts of damaging X-rays during solar flares.
Energetic cosmic rays from elsewhere in the galaxy also penetrate into our solar system. These phenomena are some of the major sources of abnormal behaviour and aging for spacecraft and their sensitive scientific instruments.

“SEISOP can potentially provide warning services to space agencies worldwide, since space weather can affect any spacecraft.”

Space Weather affects spacecraft in many ways

Developed in collaboration with the ESA Space Weather Applications Pilot Project with funding from the Portuguese Task Force at ESA, SEISOP comprises a database of spacecraft health records and worldwide space weather observations, combined with sophisticated software applications that provide reporting, warning, forecasting and history tracking for the Integral Flight Control Team.
"Space weather affects spacecraft in many ways. There can be random lost data, changes in orbit dynamics and reduced quality of science data. Therefore, real-time updates are essential when deciding how long to shut down instruments during hazardous periods," says Alessandro Donati, Head of ESOC's Advanced Mission Concepts and Technologies office.

ESA, NASA, NOAA, other sources feed data to SEISOP

Some of the space weather data is gathered by ESA, NASA and NOAA (US National Oceanic & Atmospheric Administration) spacecraft, while other observations come from numerous ground-based institutes and facilities. SEISOP is a member of SWENET, the Space Weather European Network.

SEISOP enables mission controllers to predict when they should shut down instruments such as star trackers, place systems into 'safe mode' or take other action to protect sensitive on-board electronics and scientific sensors.

While some instruments are equipped to automatically shut down during adverse periods, not all are and bringing an instrument back into service after an automated shut down is time consuming. Further, it has until now been difficult to know when radiation had fallen to safe levels, once an event like a solar flare had taken place.

SEISOP to enter operational development

In 2007, SEISOP will enter operational development aimed at providing all ESA missions with the same vital space weather updates. "We expect to start work this year to create the final operational version. SEISOP can potentially provide warning services not only within ESA but also to space agencies worldwide, since space weather can affect any spacecraft," says Donati.

Bernhard Von Weyhe | EurekAlert!
Further information:
http://www.esa.int/esaCP/SEMGSSSMTWE_index_0.html

Further reports about: ESA SEISOP SOLAR spacecraft

More articles from Life Sciences:

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

127 at one blow...

18.01.2017 | Life Sciences

Brain-Computer Interface: What if computers could intuitively understand us

18.01.2017 | Information Technology

How gut bacteria can make us ill

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>