Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sentry enzyme blocks two paths to Parkinson's disease

06.02.2007
St. Jude study shows the enzyme GST pi stands at the crossroads of several pathways that lead to the death of dopaminergic neurons and prevents both cell degeneration and cell suicide

The degeneration of brain cells that occurs in Parkinson's disease may be caused by either externally provoked cell death or internally initiated suicide when the molecule that normally prevents these fatal alternatives is missing, according to studies in mouse models by investigators at St. Jude Children's Research Hospital.

Parkinson's disease is a disease in which nerve cells in part of the brain called the substantia nigra die, resulting in the loss of dopamine, a nerve-signaling molecule that helps control muscle movement. The absence of dopamine from these cells, called dopaminergic neurons, causes a loss of muscle control, trembling and lack of coordination.

The molecule that prevents damage to the substantia nigra is an enzyme called GST pi ("pie"). This molecule stands like a sentry at the crossroads of several biochemical pathways, any one of which can lead to Parkinson's disease, the researchers reported in an article in the Feb. 1 early online edition of Proceedings of the National Academy of Sciences.

The job of the antioxidant GST pi is to protect the cell from death caused by either environmental toxins (externally evoked cell death), such as herbicides and pesticides, or a self-destruction process called apoptosis (cell suicide), triggered by certain stressful conditions in the cell. If GST pi levels are reduced or this enzyme is overwhelmed by toxins, these nerves are at increased risk of death. Previous research has shown that the ability of GST pi to protect cells against toxic molecules is directly linked to the ability of cancer cells with excessive amounts of this enzyme to reduce the effectiveness of chemotherapy.

The finding that GST pi plays a key role in preventing Parkinson's disease suggests that measuring levels of this enzyme might be an effective way to determine individuals at risk for developing this disease, according to Richard Smeyne, Ph.D., an associate member of the Department of Developmental Neurobiology at St. Jude. "In the future, treatments that increase GST pi levels in the substantia nigra might help to prevent or delay the onset of Parkinson's disease or reduce its severity," said Smeyne, the report's senior author.

GST pi is one of a family of similar enzymes that eliminate free radicals generated by pesticides and other chemicals. Two members of this family are present in the brain, but only one of them, GST pi, is found in the dopaminergic neurons of the substantia nigra. Free radicals are highly unstable molecules that readily interact with other molecules, causing cell damage.

The study sheds light on the cause of most cases of Parkinson's disease, which currently are unexplained. "The majority of these cases of Parkinson's disease appear to arise because individuals who have a genetic susceptibility to the disease are exposed to environmental toxins such as pesticides and herbicides, which trigger the formation of free radicals that kill dopaminergic neurons in the substantia nigra," Smeyne said. "We also know that GST pi blocks the process of cell suicide triggered by stresses that the cell can't overcome, such as an increase in the presence of free radicals or a loss of the cell's ability to produce energy.".

Smeyne's team showed that of the two known types of GST in the brain, only GST pi was present in the dopaminergic neurons that are lost in Parkinson's disease. The scientists then treated two different populations of mice with MPTP, a chemical that causes loss of these cells, in order to determine if levels of GST pi changed. In mice known to be sensitive to MPTP, there was a complete but transient loss of GST pi in the dopaminergic neurons of the substantia nigra, while the same area of the brain in MPTP-resistant mice never completely lost GST pi and recovered their original levels within 12 hours.

In addition, the team showed that when MPTP-resistant mice were treated with this drug, the presence of GST pi in the dopaminergic neurons prevented activation of cJUN, a molecule that triggers apoptosis. These findings are evidence that GST pi prevents apoptosis in dopaminergic neurons of the substantia nigra, Smeyne said.

The investigators also showed in cell culture studies that blocking production of GST pi in substantia nigra cells left them vulnerable to MPTP, causing a significant death rate among these cells. In addition, when the investigators blocked GST pi production in the dopaminergic neurons of the substantia nigra, about one-quarter of them died, even though they were not treated with MPTP. "This suggests that even in the absence of MPTP the enzyme GST pi plays a critical role in preventing cell death that may occur with the natural buildup of free radicals," Smeyne said.

Finally, the investigators studied the effect of MPTP on the substantia nigra of normal, "wild-type" mice and mice that lacked one (+/-) or both (-/-) genes for GST pi. Wild-type and GST pi (+/-) mice showed similar resistance to MPTP, but GST pi (-/-) mice lost slightly less than half of their dopaminergic neurons following treatment with MPTP. Six hours after MPTP treatment, the formation of free radicals increased 300 percent in the substantia nigra of GST pi (-/-) mice compared with the substantia nigra of GST pi (+/+) mice. These results are additional evidence that GST pi may play an important role in preventing Parkinson's disease," Smeyne said.

Results of the St. Jude study showing the importance of GST pi could help to explain previous work by other researchers linking loss of this enzyme to destruction of dopaminergic neurons. For example, there is some evidence that alterations in the gene for GSP pi are linked to increased risk of Parkinson's disease after pesticide exposure. Also, although most Parkinson's disease cases have no known cause, experts believe that they are caused by the interaction of genetic susceptibility to Parkinson's disease with exposure to a variety of environmental factors, such as pesticides and herbicides.

"Therefore, the new findings bring researchers a step closer to understanding why Parkinson's disease occurs and potentially how to develop more effective treatments for it," Smeyne said.

Summer Freeman | EurekAlert!
Further information:
http://www.stjude.org

Further reports about: GST MPTP Nigra Parkinson' Smeyne Substantia dopamine dopaminergic free radicals investigators radicals

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>