Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sentry enzyme blocks two paths to Parkinson's disease

St. Jude study shows the enzyme GST pi stands at the crossroads of several pathways that lead to the death of dopaminergic neurons and prevents both cell degeneration and cell suicide

The degeneration of brain cells that occurs in Parkinson's disease may be caused by either externally provoked cell death or internally initiated suicide when the molecule that normally prevents these fatal alternatives is missing, according to studies in mouse models by investigators at St. Jude Children's Research Hospital.

Parkinson's disease is a disease in which nerve cells in part of the brain called the substantia nigra die, resulting in the loss of dopamine, a nerve-signaling molecule that helps control muscle movement. The absence of dopamine from these cells, called dopaminergic neurons, causes a loss of muscle control, trembling and lack of coordination.

The molecule that prevents damage to the substantia nigra is an enzyme called GST pi ("pie"). This molecule stands like a sentry at the crossroads of several biochemical pathways, any one of which can lead to Parkinson's disease, the researchers reported in an article in the Feb. 1 early online edition of Proceedings of the National Academy of Sciences.

The job of the antioxidant GST pi is to protect the cell from death caused by either environmental toxins (externally evoked cell death), such as herbicides and pesticides, or a self-destruction process called apoptosis (cell suicide), triggered by certain stressful conditions in the cell. If GST pi levels are reduced or this enzyme is overwhelmed by toxins, these nerves are at increased risk of death. Previous research has shown that the ability of GST pi to protect cells against toxic molecules is directly linked to the ability of cancer cells with excessive amounts of this enzyme to reduce the effectiveness of chemotherapy.

The finding that GST pi plays a key role in preventing Parkinson's disease suggests that measuring levels of this enzyme might be an effective way to determine individuals at risk for developing this disease, according to Richard Smeyne, Ph.D., an associate member of the Department of Developmental Neurobiology at St. Jude. "In the future, treatments that increase GST pi levels in the substantia nigra might help to prevent or delay the onset of Parkinson's disease or reduce its severity," said Smeyne, the report's senior author.

GST pi is one of a family of similar enzymes that eliminate free radicals generated by pesticides and other chemicals. Two members of this family are present in the brain, but only one of them, GST pi, is found in the dopaminergic neurons of the substantia nigra. Free radicals are highly unstable molecules that readily interact with other molecules, causing cell damage.

The study sheds light on the cause of most cases of Parkinson's disease, which currently are unexplained. "The majority of these cases of Parkinson's disease appear to arise because individuals who have a genetic susceptibility to the disease are exposed to environmental toxins such as pesticides and herbicides, which trigger the formation of free radicals that kill dopaminergic neurons in the substantia nigra," Smeyne said. "We also know that GST pi blocks the process of cell suicide triggered by stresses that the cell can't overcome, such as an increase in the presence of free radicals or a loss of the cell's ability to produce energy.".

Smeyne's team showed that of the two known types of GST in the brain, only GST pi was present in the dopaminergic neurons that are lost in Parkinson's disease. The scientists then treated two different populations of mice with MPTP, a chemical that causes loss of these cells, in order to determine if levels of GST pi changed. In mice known to be sensitive to MPTP, there was a complete but transient loss of GST pi in the dopaminergic neurons of the substantia nigra, while the same area of the brain in MPTP-resistant mice never completely lost GST pi and recovered their original levels within 12 hours.

In addition, the team showed that when MPTP-resistant mice were treated with this drug, the presence of GST pi in the dopaminergic neurons prevented activation of cJUN, a molecule that triggers apoptosis. These findings are evidence that GST pi prevents apoptosis in dopaminergic neurons of the substantia nigra, Smeyne said.

The investigators also showed in cell culture studies that blocking production of GST pi in substantia nigra cells left them vulnerable to MPTP, causing a significant death rate among these cells. In addition, when the investigators blocked GST pi production in the dopaminergic neurons of the substantia nigra, about one-quarter of them died, even though they were not treated with MPTP. "This suggests that even in the absence of MPTP the enzyme GST pi plays a critical role in preventing cell death that may occur with the natural buildup of free radicals," Smeyne said.

Finally, the investigators studied the effect of MPTP on the substantia nigra of normal, "wild-type" mice and mice that lacked one (+/-) or both (-/-) genes for GST pi. Wild-type and GST pi (+/-) mice showed similar resistance to MPTP, but GST pi (-/-) mice lost slightly less than half of their dopaminergic neurons following treatment with MPTP. Six hours after MPTP treatment, the formation of free radicals increased 300 percent in the substantia nigra of GST pi (-/-) mice compared with the substantia nigra of GST pi (+/+) mice. These results are additional evidence that GST pi may play an important role in preventing Parkinson's disease," Smeyne said.

Results of the St. Jude study showing the importance of GST pi could help to explain previous work by other researchers linking loss of this enzyme to destruction of dopaminergic neurons. For example, there is some evidence that alterations in the gene for GSP pi are linked to increased risk of Parkinson's disease after pesticide exposure. Also, although most Parkinson's disease cases have no known cause, experts believe that they are caused by the interaction of genetic susceptibility to Parkinson's disease with exposure to a variety of environmental factors, such as pesticides and herbicides.

"Therefore, the new findings bring researchers a step closer to understanding why Parkinson's disease occurs and potentially how to develop more effective treatments for it," Smeyne said.

Summer Freeman | EurekAlert!
Further information:

Further reports about: GST MPTP Nigra Parkinson' Smeyne Substantia dopamine dopaminergic free radicals investigators radicals

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>