Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Male-killing bacteria makes female butterflies more promiscuous

06.02.2007
A study at UCL (University College London) finds that a high-prevalence of male-killing bacteria active in many species of insect including the butterfly, actually increases female promiscuity and male fatigue.

The team found that when the male insect population drops – killed off by the bacteria – the female butterfly becomes more sexually rampant. Males on the other hand show signs of fatigue and put less effort into mating.

In some populations of tropical butterfly the entire mating system is determined by a group of bacteria known as Wolbachia, according to the study, published in the journal ‘Current Biology’.

Dr Sylvain Charlat, of the UCL Department of Biology, who led the study, said: ”Male-killling bacteria are found in many insect species including the British ladybird. We wanted to know what the effect of the bacteria is on the mating system, and here we’ve shown that butterfly mating patterns are strongly determined by the killer bacteria.

... more about:
»Population »mating »promiscuity

“Contrary to expectation, we also find that female promiscuity actually rises when male numbers are reduced. Greater numbers of female partners leads to fatigue in males. They start producing smaller sperm packages. Unfortunately, the female butterflies instinctively know that the packages are smaller and that their chances of having been impregnated after mating are lower than usual. This just makes them more rampant!”

The male-killling bacterium is transmitted from mother to son and actually kills the son before the embryo hatches into a caterpillar. Only female offspring of female carriers of the bacteria can survive, which can lead to the male population being as low as one male to every hundred females in some areas.

Dr Greg Hurst, of the UCL Department of Biology and a senior author of the study, said: “It’s amazing that the numbers of male butterflies can get so low and yet the population is still sustainable and stable. You don’t need many male butterflies to continue the population successfully. This is partly because the decision to mate is mainly under female control and because males have a high mating capacity.”

This study was carried out on Hypolimnas bolina butterflies in Pacific Island and South-East Asian populations. The islands provide an ideal location because every island is differently affected by the male-killling bacteria so that each has a different ratio of males to females.

The researchers assessed the natural sex ratio in 20 populations and combined this data with female mating frequency and the size of the male sperm package (Spermatophore) per copulation to find how female promiscuity was affected by the sex ratio. They found that the size of the Spermatophore was key to female promiscuity. However, female promiscuity only rises up to the point where males become so rare that female virginity rates rise.

The male-killling phenomenon in this species was first identified in 1920 by Hubert Simmonds but has not received much attention until now. This finding is significant for the scientific community because it demonstrates how a species’ mating system can be determined by the frequency of a parasite.

Alex Brew | alfa
Further information:
http://www.ucl.ac.uk

Further reports about: Population mating promiscuity

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>