Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop marker that identifies energy-producing centers in nerve cells

05.02.2007
Discovery provides a tool to track brain cell metabolic changes related to aging and diseases such as Alzheimer's, Parkinson's and Huntington's

A protein that causes coral to glow is helping researchers at the University of Maryland School of Medicine to light up brain cells that are critical for the proper functioning of the central nervous system. This fluorescent marker protein may shed light on brain cell defects believed to play a role in various neurological diseases. The researchers describe how this marker works in mice in the December 20, 2006, issue of The Journal of Neuroscience.

The marker gives scientists the first-ever opportunity to distinguish between energy-producing structures, called mitochondria, in neurons, from mitochondria in other brain cells, called glia. Defects in mitochondria may be part of the process that leads to Alzheimer's and Parkinson's disease, as well as changes in the brain associated with stroke and aging.

"Prior to the development of this marker, we had no way to identify the mitochondria in neuronal cells from those in glial cells," says the study's principal investigator, Krish Chandrasekaran, Ph.D., an assistant professor in the Department of Anesthesiology at the University of Maryland School of Medicine. "Using this tool, we and other investigators can answer certain questions, such as to what extent does neuronal mitochondrial dysfunction contribute to Parkinson's or Alzheimer's. And, in a general way, we could look into whether there are changes in neuronal mitochondria as we age."

Using advanced genetic techniques, the researchers have produced mice with fluorescent protein markers that identify only the mitochondria in neurons. These structures light up with a greenish-yellow glow when the scientists look at the brains of these mice through a fluorescent microscope. The researchers have determined that the expression of the fluorescent protein does not interfere with the normal functions of mitochondria.

Neurons conduct and generate electro-chemical impulses or nerve signals, which carry information from one part of the brain to another. Mitochondria in the neurons function like cellular powerhouses to produce those impulses through a metabolic process that combines oxygen with food calories. It is these nerve signals that cause muscles to move and thoughts to be processed. Dr. Chandrasekaran says the fluorescent marker system may make it possible to explore how neuronal activity and the mitochondrial energy-producing system are coordinated and how the interrelationship works.

The researchers say the establishment of the fluorescent marker in mice could unravel the mysteries of some of the most debilitating neurodegenerative diseases. The study's senior author, Tibor Kristian, Ph.D., an assistant professor in the Department of Anesthesiology at the University of Maryland School of Medicine, says there are animal models for several of these diseases including Parkinson's, Alzheimer's, amyotrophic lateral sclerosis (also known as ALS) and Huntington's disease. "The mice we have developed with the fluorescent protein could be bred with mouse models of various neurological diseases, so we could apply the ability to see mitochondria in neurons to the research of those diseases," says Dr. Kristian.

This mouse model could also be used to study the role of neuronal mitochondria in stroke and traumatic brain injury, according to Dr. Kristian. He says his investigators are developing a similar marker for glial cells in the brain.

Bill Seiler | EurekAlert!
Further information:
http://www.umm.edu

Further reports about: Neuronal Parkinson' energy-producing fluorescent mitochondria neurons

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>