Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advance in understanding of blood pressure gene could lead to new treatments

05.02.2007
Advance in understanding of blood pressure gene could lead to new treatments

Research by scientists at UCL (University College London) has clearly demonstrated for the first time the structure and function of a gene crucial to the regulation of blood pressure. The discovery could be important in the search for new treatments for illnesses such as heart disease, the UK’s biggest killer.

In a paper published online today in Nature Medicine, the team, led by Professor Patrick Vallance and Dr James Leiper, UCL Department of Medicine, reveal the role of the human gene dimethylarginine dimethylaminohydrolase (DDAH), showing that loss of DDAH activity disrupts nitric oxide (NO) production. NO is critical in the regulation of blood pressure, nervous system functions and the immune system.

The role of DDAH is to break down modified amino acids (Asymmetric dimethylarginine (ADMA) and monomethyl arginine (L-NMMA)) that are produced by the body and have been shown to inhibit NO synthase. These molecules accumulate in various disease states including diabetes, renal failure and pulmonary and systemic hypertension, and their concentration in plasma (the fluid component of blood) is strongly predicative of cardiovascular disease and death.

... more about:
»ADMA »DDAH »blood pressure »blood vessel

In a healthy human body, the majority of ADMA is eliminated through active metabolism by DDAH. Scientists have hypothesised that if DDAH function is impaired, NO production is reduced, and that this could be an important feature of increased cardiovascular risk.

To examine this pathway in more detail, the researchers deleted the DDAH gene in mice. These mice went on to develop hypertension, or high blood pressure. They also designed specific inhibitors (small molecules) which bind to the active site of human DDAH. These small molecule inhibitors also induced hypertension in mice, confirming the importance of DDAH in the regulation of blood pressure.

Dr Leiper, UCL Medicine, said: “These genetic and chemical approaches to disrupt DDAH showed remarkably consistent results, and provide compelling evidence that loss of DDAH function increases the concentration of ADMA and thereby disrupts vascular NO signalling.

“There has been considerable scientific interest in this pathway and the role of ADMA as a novel risk factor, but so far there’s been little evidence to support the idea that it’s a cause of disease, rather than just a marker. Genes and their pathways are crucial to our understanding of cardiovascular disease and a better understanding of DDAH-1 could lead to important new treatments.

“It could help us to establish if genetic variation predisposes certain people to these diseases, or whether environmental factors exert some of their effects through modulation of DDAH activity.

“Our research also shows that this pathway could be harnessed therapeutically to limit production of NO in certain situations where too much nitric oxide is a bad thing; for example, hypotension and septic shock. These are some of the biggest problems in intensive care medicine and there is a huge unmet need for drug treatments.”

The study, which was carried out at UCL’s Rayne Institute, was funded by grants from the British Heart Foundation, the Wellcome Trust and the Medical Research Council.

Professor Jeremy Pearson, Associate Medical Director of the British Heart Foundation, said:

"The unexpected finding in the 1980s that a simple gas, nitric oxide (NO), is made by cells in the blood vessel wall and is a powerful control of blood vessel relaxation led to the award of the Nobel Prize in 1998 to its discoverers.

"More recently, there has been increasing evidence that impairment of NO production is likely to be an important factor in the development of heart and circulatory disease, but the mechanisms responsible are not fully understood.

"This study suggests for the first time that the loss of the activity of the enzyme DDAH-1 leads to reduced NO production and may cause heart and circulatory disease. These findings are likely to be important in the search for new ways to optimise the health of our blood vessels."

Dominique Fourniol | alfa
Further information:
http://www.ucl.ac.uk

Further reports about: ADMA DDAH blood pressure blood vessel

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>