Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advance in understanding of blood pressure gene could lead to new treatments

05.02.2007
Advance in understanding of blood pressure gene could lead to new treatments

Research by scientists at UCL (University College London) has clearly demonstrated for the first time the structure and function of a gene crucial to the regulation of blood pressure. The discovery could be important in the search for new treatments for illnesses such as heart disease, the UK’s biggest killer.

In a paper published online today in Nature Medicine, the team, led by Professor Patrick Vallance and Dr James Leiper, UCL Department of Medicine, reveal the role of the human gene dimethylarginine dimethylaminohydrolase (DDAH), showing that loss of DDAH activity disrupts nitric oxide (NO) production. NO is critical in the regulation of blood pressure, nervous system functions and the immune system.

The role of DDAH is to break down modified amino acids (Asymmetric dimethylarginine (ADMA) and monomethyl arginine (L-NMMA)) that are produced by the body and have been shown to inhibit NO synthase. These molecules accumulate in various disease states including diabetes, renal failure and pulmonary and systemic hypertension, and their concentration in plasma (the fluid component of blood) is strongly predicative of cardiovascular disease and death.

... more about:
»ADMA »DDAH »blood pressure »blood vessel

In a healthy human body, the majority of ADMA is eliminated through active metabolism by DDAH. Scientists have hypothesised that if DDAH function is impaired, NO production is reduced, and that this could be an important feature of increased cardiovascular risk.

To examine this pathway in more detail, the researchers deleted the DDAH gene in mice. These mice went on to develop hypertension, or high blood pressure. They also designed specific inhibitors (small molecules) which bind to the active site of human DDAH. These small molecule inhibitors also induced hypertension in mice, confirming the importance of DDAH in the regulation of blood pressure.

Dr Leiper, UCL Medicine, said: “These genetic and chemical approaches to disrupt DDAH showed remarkably consistent results, and provide compelling evidence that loss of DDAH function increases the concentration of ADMA and thereby disrupts vascular NO signalling.

“There has been considerable scientific interest in this pathway and the role of ADMA as a novel risk factor, but so far there’s been little evidence to support the idea that it’s a cause of disease, rather than just a marker. Genes and their pathways are crucial to our understanding of cardiovascular disease and a better understanding of DDAH-1 could lead to important new treatments.

“It could help us to establish if genetic variation predisposes certain people to these diseases, or whether environmental factors exert some of their effects through modulation of DDAH activity.

“Our research also shows that this pathway could be harnessed therapeutically to limit production of NO in certain situations where too much nitric oxide is a bad thing; for example, hypotension and septic shock. These are some of the biggest problems in intensive care medicine and there is a huge unmet need for drug treatments.”

The study, which was carried out at UCL’s Rayne Institute, was funded by grants from the British Heart Foundation, the Wellcome Trust and the Medical Research Council.

Professor Jeremy Pearson, Associate Medical Director of the British Heart Foundation, said:

"The unexpected finding in the 1980s that a simple gas, nitric oxide (NO), is made by cells in the blood vessel wall and is a powerful control of blood vessel relaxation led to the award of the Nobel Prize in 1998 to its discoverers.

"More recently, there has been increasing evidence that impairment of NO production is likely to be an important factor in the development of heart and circulatory disease, but the mechanisms responsible are not fully understood.

"This study suggests for the first time that the loss of the activity of the enzyme DDAH-1 leads to reduced NO production and may cause heart and circulatory disease. These findings are likely to be important in the search for new ways to optimise the health of our blood vessels."

Dominique Fourniol | alfa
Further information:
http://www.ucl.ac.uk

Further reports about: ADMA DDAH blood pressure blood vessel

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>