Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obesity drug helps unlock clues about cancer

05.02.2007
An approved drug for fighting obesity is helping scientists at Wake Forest University School of Medicine uncover clues about how to stop the growth of cancerous tumors.

"Our discovery makes an exciting treatment target because theoretically you don't have to worry about harming nearby healthy tissue," said senior researcher Steven J. Kridel, Ph.D., an assistant professor in the Department of Cancer Biology.

In the current issue of Cancer Research, Kridel and colleagues are the first to report that a tubular network within cells, known as the endoplasmic reticulum (ER), is regulated by an enzyme that is tightly linked to tumor growth and development.

"When the ER cannot do its job properly, there's a series of events that gets turned on that can lead to cell suicide or death," said Kridel.

... more about:
»Cancer »Kridel »acid »enzyme »synthase »tumor cells

The research showed that an enzyme known as fatty acid synthase is vital for the ER to do its job. Blocking this enzyme, which makes fat in cells, has been shown to prevent tumor cell growth and to promote cell death.

"No one had made connection before between fatty acid synthase and the function of the ER in tumor cells," said Kridel. "This is the first to show that fatty acid synthesis is important in maintaining ER function and keeping tumor cells alive."

The researchers started the work five years ago when they analyzed prostate cancer cells to see which proteins and enzymes were expressed at high levels. Their hope was that treatments that reduced those levels could also stop tumor growth.

"We found that fatty acid synthase is expressed at high levels in tumor cells, but is fairly absent in normal cells," said Kridel. "Other researchers had made similar findings in other types of cancer cells, so we decided to follow up because it looked promising.

"We then made the surprising finding that OrlistatTM, a drug approved by the FDA to treat obesity, can block the function of fatty acid synthase, prevent tumor cell growth and promote tumor cell death."

Finding out exactly how the drug worked was the next step, so that better treatments could be developed. While effective in mice, Olistat's current formulation cannot be given to humans as a cancer treatment because it acts only in the digestive tract.

In the current study, Kridel and colleagues treated prostate, colon and cervical cancer cells in the laboratory with Olistat and two other agents to understand why blocking fatty acid synthase induces cell death.

"Our goal was to understand how fatty acid synthase contributes to tumor growth," said Kridel. "This might provide an explanation for why this enzyme is expressed at high levels."

Now that the scientists understand that the ER is involved -- and that inhibiting fatty acid synthase can impair its function -- they are working to develop new treatments for cancer therapy.

They are exploring the possibility of using existing FDA-approved drugs, as well as developing new drugs. They've already determined that the structure of Orlistat bound to fatty acid synthase, which is the first step in developing similar agents that could be used in humans.

"Our latest findings that connect fatty acid synthase and ER function gives us a better understanding about how the drug kills tumor cells and give us clues to make better drugs," said Kridel. "For any drugs we develop, we'll need to show that they impair the function of the ER."

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

Further reports about: Cancer Kridel acid enzyme synthase tumor cells

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>