Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peptide vaccine fights off breast tumors with aid of bacteria-mimicking agents

05.02.2007
With the help of immune system-stimulating molecules that mimic bacterial components, researchers have used a type of cancer vaccine to both delay and prevent breast tumors in mice. The strategy, they say, holds promise for the future use of peptide vaccines in women who are at high risk for developing breast cancer.

Researchers from the Mayo Clinic, University of South Florida, and University of Torino employed substances called toll-like receptor agonists to help a synthetic peptide vaccine raise the immune system response against breast cancer tumors. Simultaneously, they used antibodies to blunt other aspects of the immune system that might interfere with a strong killer T cell response, improving the effectiveness of the vaccine.

In the February 1 issue of Cancer Research, the researchers report that their strategy was effective in preventing spontaneous tumors in transgenic mouse models for breast cancer, even when the vaccine was given when the mice already had early stage cancer.

"The challenge is to get a foreign peptide recognized by the immune system as a threat so it can react and produce anti-tumor immune cells," said Esteban Celis, M.D., Ph.D., professor in the department of interdisciplinary oncology at the H. Lee Moffitt Cancer Center and Research Institute at the University of South Florida in Tampa. "We've shown that stimulating the immune system using toll-like receptor agonists is very important to alerting it and producing lymphocytes that will have an anti-tumor effect."

According to Celis, the immune system usually doesn't react as strongly to a synthetic peptide in a vaccine as it does against an infectious agent, which is why immune system boosters such as toll-like receptor agonists, which mimic bacterial DNA, help. They also used anti-CD25 antibodies to tie up immune system T regulatory cells, which often serve as brakes that can reduce responses to the vaccine.

The researchers studied both normal mice and transgenic mice carrying an activated HER2/neu oncogene, which has been linked to breast cancer in humans. In order to get a protective immune response, the transgenic mice were repeatedly given vaccine in combination with the toll-like receptor agonist or were given antibodies that blocked their protective T regulatory cells. Celis and his colleagues found that the peptide vaccine administered this way could prevent or slow the growth of injected tumor cells, and showed some benefit against early stage spontaneous breast tumors.

The vaccine was most effective in preventing spontaneous tumors when it was given once at week eight – along with anti-CD25 antibodies -- when most mice have excessive and often precancerous breast tissue growth called hyperplasia. It completely prevented spontaneous tumors in HER2/neu mice up to 35 weeks of age. Even without the antibody, tumors took much longer to develop, and when they did, they grew more slowly.

"This kind of therapy could be applied to women who have a high likelihood of developing cancer -- women with pre-malignant hyperplasia or who have a genetic predisposition or make-up that makes them at high risk," Celis said.

Although the peptide vaccine was effective in preventing spontaneous tumors in the HER2/neu mice, Celis cautions that the mice had to be vaccinated prior to the appearance of measurable tumors and that the animals had to receive repeated immunizations.

"Once tumors appear, only certain mice respond and there is only a delay in tumor growth," he said. "It extends survival but does not cure the mice. We know that the immune response in these mice is much lower than in the animals that are younger, and it's likely that the tumor is making something that is inhibiting the immune response."

Greg Lester | EurekAlert!
Further information:
http://www.aacr.org

Further reports about: Antibodies Celis Peptide Vaccine agonist breast immune system spontaneous

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>