Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peptide vaccine fights off breast tumors with aid of bacteria-mimicking agents

05.02.2007
With the help of immune system-stimulating molecules that mimic bacterial components, researchers have used a type of cancer vaccine to both delay and prevent breast tumors in mice. The strategy, they say, holds promise for the future use of peptide vaccines in women who are at high risk for developing breast cancer.

Researchers from the Mayo Clinic, University of South Florida, and University of Torino employed substances called toll-like receptor agonists to help a synthetic peptide vaccine raise the immune system response against breast cancer tumors. Simultaneously, they used antibodies to blunt other aspects of the immune system that might interfere with a strong killer T cell response, improving the effectiveness of the vaccine.

In the February 1 issue of Cancer Research, the researchers report that their strategy was effective in preventing spontaneous tumors in transgenic mouse models for breast cancer, even when the vaccine was given when the mice already had early stage cancer.

"The challenge is to get a foreign peptide recognized by the immune system as a threat so it can react and produce anti-tumor immune cells," said Esteban Celis, M.D., Ph.D., professor in the department of interdisciplinary oncology at the H. Lee Moffitt Cancer Center and Research Institute at the University of South Florida in Tampa. "We've shown that stimulating the immune system using toll-like receptor agonists is very important to alerting it and producing lymphocytes that will have an anti-tumor effect."

According to Celis, the immune system usually doesn't react as strongly to a synthetic peptide in a vaccine as it does against an infectious agent, which is why immune system boosters such as toll-like receptor agonists, which mimic bacterial DNA, help. They also used anti-CD25 antibodies to tie up immune system T regulatory cells, which often serve as brakes that can reduce responses to the vaccine.

The researchers studied both normal mice and transgenic mice carrying an activated HER2/neu oncogene, which has been linked to breast cancer in humans. In order to get a protective immune response, the transgenic mice were repeatedly given vaccine in combination with the toll-like receptor agonist or were given antibodies that blocked their protective T regulatory cells. Celis and his colleagues found that the peptide vaccine administered this way could prevent or slow the growth of injected tumor cells, and showed some benefit against early stage spontaneous breast tumors.

The vaccine was most effective in preventing spontaneous tumors when it was given once at week eight – along with anti-CD25 antibodies -- when most mice have excessive and often precancerous breast tissue growth called hyperplasia. It completely prevented spontaneous tumors in HER2/neu mice up to 35 weeks of age. Even without the antibody, tumors took much longer to develop, and when they did, they grew more slowly.

"This kind of therapy could be applied to women who have a high likelihood of developing cancer -- women with pre-malignant hyperplasia or who have a genetic predisposition or make-up that makes them at high risk," Celis said.

Although the peptide vaccine was effective in preventing spontaneous tumors in the HER2/neu mice, Celis cautions that the mice had to be vaccinated prior to the appearance of measurable tumors and that the animals had to receive repeated immunizations.

"Once tumors appear, only certain mice respond and there is only a delay in tumor growth," he said. "It extends survival but does not cure the mice. We know that the immune response in these mice is much lower than in the animals that are younger, and it's likely that the tumor is making something that is inhibiting the immune response."

Greg Lester | EurekAlert!
Further information:
http://www.aacr.org

Further reports about: Antibodies Celis Peptide Vaccine agonist breast immune system spontaneous

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>