Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford-led study closes in on genes that may predispose some people to severe depression

05.02.2007
Some people appear to be genetically predisposed to developing severe depression, but researchers have yet to pin down the genes responsible. Now, a specific region rife with promise has been located on one chromosome by a consortium of researchers working under Douglas Levinson, MD, professor of psychiatry and behavioral sciences at the Stanford University School of Medicine.

"This finding has a very good chance of leading to a discovery of a gene that could yield important information about why some people develop depression," said Levinson. If problematic genetic variations could be identified, it would open the door to a whole new world of investigation, and eventually, treatment possibilities. The team's results are reported in two papers that will be published in the February issue of the American Journal of Psychiatry.

Levinson's group, comprising researchers from six universities, achieved this breakthrough by studying 650 families in which at least two members suffered from repeated bouts of severe depression that began in childhood or early adult life. The first of the studies was a genome-wide scan that looked for evidence of genetic "linkage" within families between depression and DNA markers on the various chromosomes. The linkage study identified regions worthy of more intensive examination.

The second study was a more detailed look at the most suspicious of these regions, located on chromosome 15. Levinson said the team studied six DNA markers in this region in the first study, and an additional 88 in the second. "We found highly significant evidence for linkage to depression in this particular part of chromosome 15," he said. "This is one of the strongest genetic linkage findings for depression so far."

... more about:
»Chromosome »DNA marker »Levinson »linkage »severe

"It's an important paper," said Peter McGuffin, MD, dean of the Institute of Psychiatry at King's College in London, who was not involved in the study. McGuffin wrote a commentary on the research that appears in the same issue. "This is one of the first big linkage studies on the genetics of depression."

Researchers learned that depression is influenced by genetics by studying patterns of depression in twins and families. No single gene is thought responsible for determining the risk for developing depression. Instead, multiple genes are probably interacting to create what amounts to a genetic baseline level of risk. On top of that baseline, environmental factors are likely mixed in as well, things such as non-genetic physiological problems or psychological traumas.

Some 10 to 15 percent of people suffer from severe depression at some point in their lives, and 3 to 5 percent have it more than once. Women are twice as likely to develop depression as men, although the reason is not yet known.

"We don't think depression is entirely genetic, by any means, but there are important genetic factors," said Levinson. "If we can succeed in finding one or more genes in which there are specific DNA sequence variations that affect one's risk of depression, then we would be able to understand what type of gene is it, what it does in the brain and by what mechanism it could make one more or less predisposed to depression."

Knowing more about which genes are the major factors causing a predisposition for depression would also help researchers sort out the environmental factors that contribute to depression, Levinson said. And knowing more about either genetic or environmental factors could help in developing more effective therapies to treat depression. "The treatments we have now are lifesavers for some people, but there are others who have only a partial response or no response at all," he said. "Understanding the biology would help the search for better treatments."

The next phase of the consortium's research is already under way. This phase is an even more detailed look at more than 2,000 individuals to identify specific genes where there are variations that increase the risk of severe depression, including closer study of the suspicious area of chromosome 15.

Louis Bergeron | EurekAlert!
Further information:
http://www.stanford.edu
http://depressiongenetics.stanford.edu

Further reports about: Chromosome DNA marker Levinson linkage severe

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>