Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrons travel through proteins like urban commuters

02.02.2007
For Duke University theoretical chemist David Beratan, the results of his 15 years of studying how electrons make their way through some important protein molecules can be summed up with an analogy: how do big city dwellers get from here to there?

It's often swiftest to take the subway, Beratan notes, but riders may sometimes elect to alter their route by exiting the train for a short cab ride or a walk down the street. And they also may have to work around a route that is temporarily out of service.

In the Friday, Feb. 2, issue of the journal Science, Beratan and two co-authors use similar logic to describe their unified description of electron movements through certain "electron-transfer" proteins that lie at the heart of many processes essential for life. Such processes include harvesting light in photosynthesis in plant cells and generating energy in animal cells.

The research was funded by the National Institutes of Health.

... more about:
»Beratan »Protein »electron-transfer

"I think we have discovered the physical framework for thinking about all such protein electron-transfer chemistry," Beratan said. "Having this rule book in place will let scientists pose some hard but interesting questions about evolutionary pressures on protein structures.

"Another payoff may be new insight for designing biologically based artificial systems that, for instance, can capture solar energy or make fertilizer from air," he added.

For more than 50 years, theoreticians have been pondering the most likely itineraries that electrons follow through electron-transfer proteins, Beratan said. These proteins "are believed to shuttle electrons around, one at a time, but not to do any chemistry that involves the forming or breaking of chemical bonds," he said.

Earlier theoretical work from Beratan's group indicated that electrons can take short cuts through the proteins by following the spooky guidelines of quantum mechanics.

That means the electrons may sometimes leak from one chemical bond to a neighboring bond, he said. They also can take forbidden walks on the wild side by tunneling through open space.

Those findings prompted scientists to conjecture that electron-transfer proteins actually evolved their shapes to allow electrons the option of using quantum rules in negotiating molecular folds and crevices. The possibilities of such quirky routing options have vastly increased the challenge for theoreticians such as Beratan.

Using ever larger networks of computers to calculate the most favorable routes of electron travel, Beratan and his colleagues analyze these proteins in much the same way that commuters pore over transportation maps to plot the fastest destination routes.

The key insight to their current study arose from understanding that as the proteins' atoms jiggle around, the "subway maps" change dynamically.

Beratan said their extended computer analyses have been aided by an experimental team from the California Institute of Technology that has been documenting where electrons are moving by attaching extra chemical groups at various positions on protein surfaces. Shining laser light on these chemical groups enables researchers to monitor the movement of electrons.

The Caltech experiments, prompted in part by the predictions of Beratan's group, showed several years ago that the swiftest electron routes can sometimes be longer than expected, because electrons move fastest along chemically bonded pathways.

In contrast, electrons move much slower if they must tunnel through empty space. But the through-space routes can actually prove optimal if they enable electrons to make major shortcuts.

"You can think about a through-bond network being analogous to taking a subway route, and a through-space connection being analogous to walking or taking a bus between subway stops," Beratan said.

New analyses reported by Beratan's group have uncovered that more complicated routings are important in some electron-transfer proteins. There can be multiple pathways that fluctuate in importance as the protein atoms move around. "We can capture those pathway fluctuations only by doing combined quantum mechanical and classical, standard calculations, which we're now able to do," he said.

The new report describes the mixed quantum-classical analysis of likely electron pathways in the electron-transfer protein cytochrome b562.

The analysis uncovered that at seven locations on the protein, electrons took multiple fluctuating pathways. "So there is always a rapid commuter route available, even if the favorite train is out of order," he said.

In two other locations, the protein offers only one dominant but slow route. There the electron has no choice but to tunnel through an especially slow bottleneck presented by the protein's structure.

"After we saw this compelling bimodal behavior in cytochrome b562, we wondered whether this behavior was general among electron-transfer proteins," Beratan said. "And we've found that all of the proteins we have looked at have this same behavior.

"I think we're able to explain why there is this dichotomy, and why some electron-transfer rates have a quite remarkable dependence on protein structure while others don't," he said. "I believe we now have a unified view of many years' worth of experimental data."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: Beratan Protein electron-transfer

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>