Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New compound shows promise in halting HIV spread

02.02.2007
A new compound has shown promise in halting the spread of HIV by preventing the virus from replicating. Developed by Temple University researchers, 2-5AN6B could someday work as an effective treatment for HIV especially in conjunction with current drug treatments. Their work is published in the January issue of AIDS Research and Human Retroviruses.

A nucleic acid, 2-5AN6B inhibited HIV replication in white blood cells from a group of 18 HIV infected patients by up to 80 percent, regardless of the patients’ treatment regimens.

"A cure for HIV infection remains an elusive goal despite the significant impact of current treatments because of the virus’ ability to adapt to and resist those treatments, and bypass the immune system’s natural defenses," said Robert J. Suhadolnik, Ph.D., prinicipal investigator and professor of biochemistry at Temple University School of Medicine. "This compound prompts the body to restore its natural antiviral defense systems against the invading virus."

Current drugs for HIV work by blocking one of the steps toward virus replication.

... more about:
»HIV »PROMISE »compound

"This new anti-HIV compound works by a very different mechanism, and would appear to offer the promise of someday being combined with existing anti-viral therapies for a much more effective treatment. It is also very important that this compound is much less likely to be defeated by the ability of the virus to mutate, a problem often encountered with existing anti-viral drugs," said Thomas Rogers, Ph.D., co-author and professor of pharmacology at Temple.

This work builds on decades of research by the Temple team which was recently awarded a grant from the National Institutes of Health to continue pre-clinical studies on a larger scale. They’ll be investigating the molecular mechanisms of 2-5AN6B as a potential weapon against HIV, and continue work on a new therapeutic approach involving gene therapy for the treatment of HIV infection.

Eryn Jelesiewicz | EurekAlert!
Further information:
http://www.temple.edu

Further reports about: HIV PROMISE compound

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>