Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New compound shows promise in halting HIV spread

02.02.2007
A new compound has shown promise in halting the spread of HIV by preventing the virus from replicating. Developed by Temple University researchers, 2-5AN6B could someday work as an effective treatment for HIV especially in conjunction with current drug treatments. Their work is published in the January issue of AIDS Research and Human Retroviruses.

A nucleic acid, 2-5AN6B inhibited HIV replication in white blood cells from a group of 18 HIV infected patients by up to 80 percent, regardless of the patients’ treatment regimens.

"A cure for HIV infection remains an elusive goal despite the significant impact of current treatments because of the virus’ ability to adapt to and resist those treatments, and bypass the immune system’s natural defenses," said Robert J. Suhadolnik, Ph.D., prinicipal investigator and professor of biochemistry at Temple University School of Medicine. "This compound prompts the body to restore its natural antiviral defense systems against the invading virus."

Current drugs for HIV work by blocking one of the steps toward virus replication.

... more about:
»HIV »PROMISE »compound

"This new anti-HIV compound works by a very different mechanism, and would appear to offer the promise of someday being combined with existing anti-viral therapies for a much more effective treatment. It is also very important that this compound is much less likely to be defeated by the ability of the virus to mutate, a problem often encountered with existing anti-viral drugs," said Thomas Rogers, Ph.D., co-author and professor of pharmacology at Temple.

This work builds on decades of research by the Temple team which was recently awarded a grant from the National Institutes of Health to continue pre-clinical studies on a larger scale. They’ll be investigating the molecular mechanisms of 2-5AN6B as a potential weapon against HIV, and continue work on a new therapeutic approach involving gene therapy for the treatment of HIV infection.

Eryn Jelesiewicz | EurekAlert!
Further information:
http://www.temple.edu

Further reports about: HIV PROMISE compound

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>