Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Facility for Structural Biology to investigate the molecules of life with powerful synchrotron radiation

02.02.2007
EMBL Hamburg builds an Integrated Facility for Structural Biology at PETRA-III - EMBL@PETRA-III

The German Federal Ministry for Education and Research (BMBF) has awarded 8.8 Million Euro to the Hamburg Outstation of the European Molecular Biology Laboratory (EMBL) for the construction of an Integrated Research Facility for Structural Biology at the new PETRA-III storage ring of the German Synchrotron Research Centre (DESY), named EMBL@PETRA-III. The new facility will comprise a complete and automated pipeline for structural investigations of proteins and other biological molecules using the high-energy X-rays of PETRA-III, soon to be one of the world’s most powerful radiation sources. The new addition to EMBL Hamburg’s existing structural biology facilities will start operations in 2010.

X-rays are an extremely powerful tool in the life sciences. The crucial molecules that determine our life, such as proteins and DNA, are too small to be observed with even the most sophisticated light microscopes. At EMBL Hamburg, structural biologists use the high-energy radiation of DESY’s synchrotron to generate three-dimensional images and to study the structure of biological molecules. Often the high-resolution images of proteins involved in diseases serve as the starting-point for the development of new drugs. In the last four years EMBL Hamburg has for example solved the structure of over 30 proteins involved in causing tuberculosis and has identified several potential drug targets.

“PETRA-III will be one of the world’s strongest synchrotron rings with leading optical parameters,” says Matthias Wilmanns, Head of EMBL Hamburg, “but to foster the use of this radiation efficiently for the life sciences it needs technical skills and experience. EMBL Hamburg has developed great expertise practicing research in structural biology for over 30 years and coordinating several big EU projects in the field. Now we will bring together the cutting-edge technology provided by DESY and our expertise in the life sciences in the new Integrated Facilities for Structural Biology at PETRA-III to make them available to the scientific community.”

... more about:
»Life »PETRA-III »Radiation »Synchrotron

EMBL@PETRA-III and its services will be accessible to structural biologists from all around the world and user time will be allocated exclusively according to scientific merit. The new facilities at PETRA-III will allow to investigate protein machines of unprecedented complexity and size and provide the unique opportunity to carry out pilot experiments in life sciences in preparation for the future X-ray Free Electron Laser at DESY.

EMBL@PETRA-III will feature three state-of-the-art synchrotron radiation beamlines. One of them will be dedicated to “Small Angle X-ray Scattering”(SAXS), which studies proteins or protein complexes in solution to infer their overall shape and gain knowledge about dynamic processes in biology. The other two beamlines will be used for crystallography, a technique to determine the structure of crystallised proteins. The extremely focused synchrotron beams of PETRA-III will reveal atomic details of crystals as small as the fraction of a micrometer for the first time. The new facility will also house infrastructure for high-throughput protein crystallisation, sample preparation and characterisation and data processing, allowing all steps of structural investigation of molecules to be carried out under one roof. This will greatly speed up the investigation of molecules relevant to life and disease.

“This unique facility will allow us to go beyond current physical limitations and to tackle problems that were out of reach in the past,” says Thomas Schneider, Project Coordinator of EMBL@PETRA-III. “It will not only strengthen Europe’s role as a key player in the life sciences, but will also further raise the profile of the city of Hamburg in the European research landscape.”

Anna-Lynn Wegener | alfa
Further information:
http://www.embl.org/aboutus/news/press/2007/01feb07/index.html

Further reports about: Life PETRA-III Radiation Synchrotron

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>